1. bookVolume 18 (2016): Edizione 2 (June 2016)
Dettagli della rivista
License
Formato
Rivista
eISSN
1899-4741
Prima pubblicazione
03 Jul 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

The activity of fused-iron catalyst doped with lithium oxide for ammonia synthesis

Pubblicato online: 30 Jun 2016
Volume & Edizione: Volume 18 (2016) - Edizione 2 (June 2016)
Pagine: 78 - 83
Dettagli della rivista
License
Formato
Rivista
eISSN
1899-4741
Prima pubblicazione
03 Jul 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

The iron catalyst precursor promoted with Al2O3, CaO, and Li2O was obtained applying the fusing method. Lithium oxide forms two phases in this iron catalyst: a chemical compound with iron oxide (Li2Fe3O4) and a solid solution with magnetite. The catalyst promoted with lithium oxide was not fully reduced at 773 K, while the catalyst containing potassium was easily reducible at the same conditions. After reduction at 873 K the activity of the catalyst promoted with lithium oxide was 41% higher per surface than the activity of the catalyst promoted with potassium oxide. The concentration of free active sites on the surface of the catalyst containing lithium oxide after full reduction was greater than the concentration of free active sites on the surface of the catalyst promoted with potassium oxide.

Keywords

1. Jennings, J.R. (1991). Catalytic Ammonia Synthesis: Fundamentals and Practice. Plenum Press. New York.10.1007/978-1-4757-9592-9Search in Google Scholar

2. Kuzniecov, L.D., Dmitrienko, L.M., Rabina, P.D. & Sokolinski, U.A. (1982). Sintiez Ammiaka. Chimia, Moscow.Search in Google Scholar

3. Aika, K. & Tamaru, K., in: Nielsen, A. (Ed.). (1995). Ammonia. Catalysis and Manufacture, Springer Verlag, Berlin.Search in Google Scholar

4. Ertl, G. (2009). Reactions at Solid Surfaces. Wiley, US10.1002/9780470535295Search in Google Scholar

5. Liu, H., Xu, R., Jiang, Z., Hu, Z., Li, Y. & Li, X. (1996). US Patent 5, 846, 507 (2002) Europea Patent. 0,763,379 and (2002) Germany Patent 69430143T2.Search in Google Scholar

6. Liu, H.Z., Li, X.N. & Hu, Z.N. (1996) Development of novel low temperature and low pressure ammonia synthesis catalyst. Appl. Catal. A. 142, 209–222. DOI: 10.1016/0926-860X(96)00047-6.10.1016/0926-860X(96)00047-6Search in Google Scholar

7. Liu, H.Z. & Li, X.N. (1997). Relationship between Precursor Phase Composition and Performance of Catalyst for Ammonia Synthesis. Ind. Eng. Chem. Res. 36, 335–342. DOI: 10.1021/IE960072S.10.1021/ie960072sSearch in Google Scholar

8. Pernicone, N., Ferrero, F., Rossetti, I., Forni, L., Canton, P., Riello, P., Fagherazzi, G., Signoretto, M. & Pinna, F. (2003). Wustite as a new precursor of industrial ammonia synthesis catalysts. Appl. Catal. A. 251, 121–129. DOI: 10.1016/S0926-860X(03)00313-2.10.1016/S0926-860X(03)00313-2Search in Google Scholar

9. Lendzion-Bieluń, Z., Arabczyk, W. & Figurski, M. (2002). The effect of the iron oxidation degree on distribution of promoters in the fused catalyst precursors and their activity in the ammonia synthesis reaction. Appl. Catal. A. 227, 255–263. DOI: 10.1016/S0926-860X(01)00938-3.10.1016/S0926-860X(01)00938-3Search in Google Scholar

10. Ertl, G., in: Jennings, J.R. (Ed.). (1991). Catalytic Ammonia Synthesis: Fundamentals and Practice. Plenum Press. Chapter 3. New York.Search in Google Scholar

11. Arabczyk, W., Narkiewicz, U. & Moszyński, D. (1999). Double-Layer Model of the Fused Iron Catalyst for Ammonia Synthesis. Langmuir 15(18), 5785–5789. DOI: 10.1021/la981132x.10.1021/la981132xSearch in Google Scholar

12. Ertl, G. & Vac, J. (1983). Sci. Technol. A1 (2), 1247–1253.Search in Google Scholar

13. Arabczyk, W., Narkiewicz, U. & Moszyński, D. (1999). Influence of potassium/oxygen layer on properties of iron surfaces. Appl. Catal. 182, 379–384. DOI: 10.1016/S0926-860X(99)00034-4.10.1016/S0926-860X(99)00034-4Search in Google Scholar

14. Strongin, D.R., Somorjai, G.A. & Catal, J. (1988). The effects of potassium on ammonia synthesis over iron singlecrystal surface. J. Catal. 10, 951–960. DOI: 10.1016/0021-9517(88)90184-4.10.1016/0021-9517(88)90184-4Search in Google Scholar

15. Mross, W.D. (1983). Alkali doping in heterogeneous catalysis. Catal. Rev. Sci. Eng. 25(4) 591–637.10.1080/01614948308078057Search in Google Scholar

16. Aleksicz, B., Mitov, J.G., Klisurski, D.G., Pietranowicz N.A., Jovanovic, N.N., Bogdanov, S.S. (1984). Comparative investigations of the effect of alkaline promoters on the activity of ammonia synthesis catalysts at atmospheric and elevated pressures. Glas. Hem. Drus. Beograd. 49, 477–483.Search in Google Scholar

17. Bosch, H., Van Omen, J.G., Gellings, P.J. (1985). On the role of alkali metals in ammonia synthesis. Appl. Catal. 18, 405–408. DOI:10.1016/S0166-9834(00)84017-8.10.1016/S0166-9834(00)84017-8Search in Google Scholar

18. Rarog, W., Kowalczyk, Z., Sentek, J., Skladanowski, D. & Zielinski, J. (2000). Effect of K, Cs and Ba on the kinetics of NH3 synthesis over carbon-based ruthenium catalysts. Catal. Lett. 68, 163–168.10.1023/A:1019024629261Search in Google Scholar

19. Aika, K. & Shimazaki, K. (1985). Support and promoter effect of ruthenium catalyst I. Characterization of alkalipromoted ruthenium/alumina catalysts for ammonia synthesis. J. Catal. 92, 296–304. DOI: 10.1016/0021-9517(85)90264-7.10.1016/0021-9517(85)90264-7Search in Google Scholar

20. Arabczyk, W., Jasinska, I. & Jędrzejewski, R. (2009). Iron catalyst for ammonia synthesis doped with lithium oxide. Catal. Comm. 10, 1821–1823. DOI: 10.1016/j.catcom.2009.06.003.10.1016/j.catcom.2009.06.003Search in Google Scholar

21. Arabczyk, W., Ziebro, J., Kałucki, K., Świerkowski, R. & Zakrzewska, M. (1996). Laboratory scale plant for continuous fusing of iron catalysts. Chemik 1, 22–24. (In Polish).Search in Google Scholar

22. Uvarov, V. & Popov, I. (2007). Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 58, 883–891. DOI: 10.1016/j.matchar.2006.09.002.10.1016/j.matchar.2006.09.002Search in Google Scholar

23. Arabczyk, W. & Lendzion-Bieluń, Z. (2001). Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Appl. Catal. 207, 37–41. DOI: 10.1016/S0926-860X(00)00614-1.10.1016/S0926-860X(00)00614-1Search in Google Scholar

24. Tiemkin, M. & Pyżew, W. (1939). Kinetics of the synthesis of ammonia on promoted iron catalysts. Phys. J. Chem. 13, 851. USSR.Search in Google Scholar

25. Lendzion-Bieluń, Z., Arabczyk, W. & Figurski, M. (2002). The effect of the iron oxidation degree on distribution of promotors in the fused catalyst precursors and their activity in the ammonia synthesis reaction. Appl. Cat. 227, 255–263. DOI: 10.1016/S0926-860X(01)00938-3.10.1016/S0926-860X(01)00938-3Search in Google Scholar

26. Figurski, M.J., Arabczyk, W., Lendzion-Bieluń, Z. & Lenart, S. (2004). Investigation of manganese-doped iron ammonia synthesis catalysts. Appl. Cat. 266(1), 11–20. DOI: 10.1016/j.apcata.2004.01.032.10.1016/j.apcata.2004.01.032Search in Google Scholar

27. Arabczyk, W., Jasińska, I. & Pelka, R. (2011). Measurements of the relative number of active sites on iron catalyst for ammonia synthesis by hydrogen desorption. Catal. Today 169, 97–101. DOI: 10.1016/j.cattod.2010.09.003.10.1016/j.cattod.2010.09.003Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo