Accesso libero

Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Buchholz, F.L. & Graham, A.T. (1997). Modern Superabsorbent Polymer Technology, Wiley, New York.Search in Google Scholar

2. Singh, B. & Pal, L. (2008). Development of sterculia gum based wound dressings for use in drug delivery. Eur. Polym. J. 44, 3222-3230. DOI: 10.1016/j.eurpolymj.2008.07.013.10.1016/j.eurpolymj.2008.07.013Search in Google Scholar

3. Sorbara, L., Jones, L. & Williams, L.D. (2009). Contact lens induced papillary conjunctivitis with silicone hydrogel lenses. Contac. Len. Anter. Eye 32, 93-96. DOI: 10.1016/j. clae.2008.07.005.Search in Google Scholar

4. Mao, L., Hu, Y., Piao, Y., Chen, X., Xian, W. & Piao, D. (2005). Structure and character of artifi cial muscle model constructed from fi brous hydrogel. Curr. Appl. Phys. 5, 426-428. DOI: 10.1016/j.cap.2004.11.003.10.1016/j.cap.2004.11.003Search in Google Scholar

5. Lee, C.T., Kung, P.H. & Lee, Y.D. (2005). Preparation of poly (vinyl alcohol)chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohyd. Polym. 61, 348-354. DOI: 10.1016/j.carbpol.2005.06.018.10.1016/j.carbpol.2005.06.018Search in Google Scholar

6. Wu, J., Wei, W., Lian, Y.W., Su, Z.G. & Ma, G.H. (2007). A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28, 2220-2232. DOI: 10.1016/j.biomaterials.2006.12.024.10.1016/j.biomaterials.2006.12.02417291582Search in Google Scholar

7. He, H., Cao, X. & Lee, L.J. (2004). Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Rel. 95, 391-402. DOI: 10.1016/j.jconrel.2003.12.004.10.1016/j.jconrel.2003.12.00415023451Search in Google Scholar

8. Lin, Y., Chen, Q. & Luo, H. (2007). Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohydr. Res. 342, 87-95. DOI: 10.1016/j.carres.2006.11.002.10.1016/j.carres.2006.11.00217125756Search in Google Scholar

9. Crini, G. (2005). Recent developments in polysaccharidebased materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38-70. DOI: 10.1016/j.progpolymsci.2004.11.002.10.1016/j.progpolymsci.2004.11.002Search in Google Scholar

10. Wang, S.F., Shen, L., Zhang, W.D. & Tong, Y.J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6, 3067-3072. DOI: 10.1021/bm050378v.10.1021/bm050378v16283728Search in Google Scholar

11. Coleman, J.N., Khan, U. & Gunko, K. (2006). Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater.18, 689-706. DOI: 10.1002/adma.200501851.10.1002/adma.200501851Search in Google Scholar

12. Estrada, A.C., Daniel-da-Silva, A.L. & Trindade, T. (2013). Photothermally enhanced release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv. 3, 10828-10836. DOI: 10.1039/C3RA40662H.10.1039/c3ra40662hSearch in Google Scholar

13. Ajayan, P.M., Stephan, O., Colliex, C. & Rauth, D.T. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212-1214. DOI: 10.1126/science.265.5176.1212.10.1126/science.265.5176.1212Search in Google Scholar

14. Dai, L. & Mau, A.W.H. (2001). Controlled synthesis and modifi cation of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 13, 899-913. DOI: 10.1002/1521-4095(200107)13:12/13.Search in Google Scholar

15. Baughman, R.H., Zakhidov, A.A. & Heer, W.A. (2002). Carbon nanotubes-the route toward applications. Science 197, 787-792. DOI: org/10.1126/science.1060928.10.1126/science.1060928Search in Google Scholar

16. Spitalsky, Z., Tasis, D., Papagelis, K. & Galiotis, C. (2010). Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357-401. DOI: 10.1016/j.progpolymsci.2009.09.003.10.1016/j.progpolymsci.2009.09.003Search in Google Scholar

17. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58. DOI: 10.1038/354056a0.10.1038/354056a0Search in Google Scholar

18. Allen, A., Cannon, A., Lee, J., King, W.P. & Graham, S. (2006). Flexible microdevices based on carbon nanotubes. J. Micromech. Microeng. 16, 2722-2729. DOI: 10.1088/0960-1317/16/12/027.10.1088/0960-1317/16/12/027Search in Google Scholar

19. Sippel-Oakley, J., Wang, H.T., Kang, B.S., Wu, Z., Ren, F., Rinzler, A.G. & Pearton, S.J. (2005). Carbon nanotube fi lms for room temperature hydrogen sensing. Nanotechnology 16, 2218-2221. DOI: 10.1088/0957-4484/16/10/040.10.1088/0957-4484/16/10/040Search in Google Scholar

20. Takenobu, T., Takahashi, T., Kanbara, T., Tsukagoshi, K., Aoyagi, Y. & Iwasa, Y. (2006). High-performance transparent fl exible transistors using carbon nanotube fi lms. Appl. Phys. Lett. 88, 033511. DOI: 10.1063/1.2166693.10.1063/1.2166693Search in Google Scholar

21. Tang, X., Bansaruntip, S., Nakayama, N., Yenilmez, E., Chang, Y.L. & Wang, Q. (2006). Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632-1636. DOI: 10.1021/nl060613v.10.1021/nl060613vSearch in Google Scholar

22. Chatterjee, S., Chatterjee, T. & Woo, S.H. (2010). A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresour. Technol. 101, 3853-3858. DOI: 10.1016/j.biortech.2009.12.089.10.1016/j.biortech.2009.12.089Search in Google Scholar

23. Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263-266. DOI: 10.1016/S0009- -2614(02)00502-X.Search in Google Scholar

24. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B. & Jia, Z. (2003). Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376, 154-158. DOI: 10.1016/S0009-2614(03)00960-6.10.1016/S0009-2614(03)00960-6Search in Google Scholar

25. Chatterjee, S., Lee, D.S., Lee, M.W. & Woo, S.H. (2009). Enhanced adsorption of Congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour. Technol. 100, 2803-2809. DOI: 10.1016/j.biortech.2008.12.035.10.1016/j.biortech.2008.12.03519208471Search in Google Scholar

26. Pourjavadi, A., Hosseini, S.H., Seidi, F. & Soleyman, R. (2012). Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym. Int. 62, 1038-1044. DOI: 10.1002/pi.4389.10.1002/pi.4389Search in Google Scholar

27. Li, S. (2010). Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylase. Bioresource Technol. 101, 2197-2202. DOI: 10.1016/j. biortech.2009.11.044.Search in Google Scholar

28. Singh, K.P., Gupta, S., Singh, A.K. & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186, 1462-1473. DOI: 10.1016/j. jhazmat.2010.12.032.Search in Google Scholar

29. Nandi, B.K., Goswami, A., Das, A.K., Mondal, B. & Purkait, M.K. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Sep. Sci. Technol. 43, 1382-1403. DOI: 10.1080/01496390701885331.10.1080/01496390701885331Search in Google Scholar

30. Mahdavinia, G.R., Aghaie, H., Sheykhloie, H., Vardini, M.T. & Etemadi, H. (2013). Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr. Polym. 98, 358-365. DOI: 10.1016/j.carbpol.2013.05.096.10.1016/j.carbpol.2013.05.09623987355Search in Google Scholar

31. Chatterjee, S., Chatterjee, T., Lim, S.R. &Woo, S.H. (2011). Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution. Biores. Tech. 102, 4402-4409. DOI: 10.1016/j.biortech.2010.12.117.10.1016/j.biortech.2010.12.11721277770Search in Google Scholar

32. Hosseinzadeh, H., Pourjavadi, A. & Zohuraan-Mehr, M.J. (2004). Modifi ed carrageenan. 2. Hydrolyzed crosslinked κ-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J. Biomater. Sci. Polymer Edn. 15, 1499-1511. DOI: 10.1163/1568562042459715.10.1163/156856204245971515696795Search in Google Scholar

33. Sjostrom, E. (1981). Wood Chemistry: Fundamental and Applications, Academic Press, Chap. 9.Search in Google Scholar

34. Park, S.J., Cho, M.S., Lim, S.T., Choi, H.J. & Jhon, M.S. (2003). Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 24, 1070-1073. DOI: 10.1002/marc.200300089.10.1002/marc.200300089Search in Google Scholar

35. Blond, D., Barron, V., Ruether, M., Ryan, K.P., Nicolosi, V., Blau, W.J. & et al. (2006). Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalised nanotubes. Adv. Funct. Mater.16, 1608-1614. DOI: 0.1002/ adfm.200500855.10.1002/adfm.200500855Search in Google Scholar

36. Yu, J.G., Zhao, X.H., Yang, H., Chen, X.H., Yang, Q., Yu, L.Y., Jiang, J.H. & Chen, X.Q. (2014). Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 482-483, 241-251. DOI: 10.1016/j.scitotenv.2014.02.129.10.1016/j.scitotenv.2014.02.12924657369Search in Google Scholar

37. Yu, J.G., Zhao, X.H., Yu, L.Y., Jiao, F.P., Jiang, J.H. & Chen, X.Q. (2014). Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Ch. 299, 1155-1163. DOI: 10.1007/s10967-013-2818-y.10.1007/s10967-013-2818-ySearch in Google Scholar

38. Crini, G. & Badot, P.M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399-447. DOI: 10.1016/j.progpolymsci.2007.11.001.10.1016/j.progpolymsci.2007.11.001Search in Google Scholar

39. Nabid, M.R., Sedghi, R., Sharifi , R., Abdi-Oskooie, H. & Heravi, M.M. (2013). Removal of toxic nitrate ions from drinking water using conducting polymer/MWCNTs nanocomposites. Iran. Polym. J. 22, 85-92. DOI: 10.1007/s13726-012-0106-2.10.1007/s13726-012-0106-2Search in Google Scholar

40. Piccin, J.S., Gomes, C.S., Feris, L.A. & Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chem. Eng. J. 183, 30-38. DOI: 10.1016/j. cej.2011.12.013.Search in Google Scholar

41. Mall, I.D., Srivastava, V.C. & Agarwal, N.K. (2006). Removal of orange-G and methyl violet dyes by adsorption onto bagasse fl y ash-kinetic study and equilibrium isotherm analyses. Dyes Pigment. 69, 210-223. DOI: 10.1016/j.dyepig.2005.03.013.10.1016/j.dyepig.2005.03.013Search in Google Scholar

42. Mohanty, K., Naidu, J.T., Meikap, B.C. & Biswas, M.N. (2006). Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 45, 5165-5171. DOI: 10.1021/ie060257r.10.1021/ie060257rSearch in Google Scholar

43. Wang, S. & Zhu, Z.H. (2007). Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pig. 75, 306-314. DOI: 10.1016/j.dyepig.2006.06.005.10.1016/j.dyepig.2006.06.005Search in Google Scholar

44. Otero, M., Rozada, F., Calvo, L.F., García, A.I. & Morán, A. (2003). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes Pig. 57, 55-65. DOI: 10.1101/gr.4039406.10.1101/gr.4039406Search in Google Scholar

45. Eren, E. (2009). Removal of basic dye by modifi ed Unye bentonite, Turkey. J. Hazard. Mater. 162, 1355-1363. DOI: 10.1016/j.jhazmat.2008.06.016.10.1016/j.jhazmat.2008.06.016Search in Google Scholar

46. Chao, A., Shyu, S., Lin, Y. & Mi, F. (2004). Enzymatic grafting of carboxyl groups on to chitosan-to confer on chitosan the property of a cationic dye adsorbent. Biores. Tech. 91, 157-162. DOI: 10.1016/S0960-8524(03)00171-8.10.1016/S0960-8524(03)00171-8Search in Google Scholar

47. Kaner, D., Sarac, A., Senkal, B.F. (2010). Removal of dyes from water using crosslinked aminomethane sulfonic acid based resin. Environ. Geochem. Health 32, 321-325. DOI: 10.1007/ s10653-010-9304-z.10.1007/s10653-010-9304-z20401517Search in Google Scholar

48. Monash, P., Niwas, R. & Pugazhenthi, G. (2011). Utilization of ball clay adsorbents for the removal of crystal violet dye from aqueous solution. Clean Techn. Environ. Policy 13, 141-151. DOI: 10.1007/s10098-010-0292-6.10.1007/s10098-010-0292-6Search in Google Scholar

49. Mahdavinia, G.R., Iravani, S., Zoroufi , S. & Hosseinzadeh, H. (2014). Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran. Polym. J. 23, 335-344. DOI: 10.1007/s13726-014-0229-8. 10.1007/s13726-014-0229-8Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering