INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Hooper, C.W. (1991). Ammonia synthesis: commercial practice. In J.R. Jennings (Ed.), Catalytic ammonia synthesis: fundamentals and practice (253-283). New York, Plenum Press.Search in Google Scholar

2. Schmidt-Szałowski, K., Szafran, M., Bobryk, E. & Sentek, J. (2013). Chemical technology. The inorganic industry. Warszawa, Wydaw. Nauk. PWN. [in Polish].Search in Google Scholar

3. Hajduk, J. & Hajduk, M. (2000). One hundred years history of the creation and development of the synthetic ammonia production. Chemik 53(10), 288-291. [in Polish].Search in Google Scholar

4. Mordecka, Z., Gołębiowski, A., Hennel, W. & Mordecki, S. (2004). Is a radical reduction of ammonia synthesis pressure advantageous? Przem. Chem. 83(1), 32-35. [in Polish].Search in Google Scholar

5. Tennison, S.R. (1991). Alternative noniron catalysts. In J.R. Jennings (Ed.), Catalytic ammonia synthesis: fundamentals and practice (303-364). New York, Plenum Press.Search in Google Scholar

6. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C.J.H., Teunissen, H.T., Stahl, K. & Chorkendorff, I. (2002). New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon. Chem. Commun. 11, 1206-1207. DOI: 10.1039/ B202781J.10.1039/b202781jSearch in Google Scholar

7. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C.J.H., Teunissen, H.T. & Chorkendorff, I. (2003). Ammonia synthesis with barium-promoted iron-cobalt alloys supported on carbon.10.1016/S0021-9517(02)00182-3Search in Google Scholar

J. Catal. 214(2), 327-335. DOI: 10.1016/S0021-9517(02)00182-3.10.1016/S0021-9517(02)00182-3Search in Google Scholar

8. Jacobsen, C.J.H. (2000). Novel class of ammonia synthesis catalysts. Chem. Commun. 12, 1057-1058. DOI: 10.1039/ B002930K.10.1039/b002930kSearch in Google Scholar

9. Kojima, R. & Aika, K. (2001). Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization. Appl. Catal. A 215(1-2), 149-160. DOI: 10.1016/S0926-860X(01)00529-4.10.1016/S0926-860X(01)00529-4Search in Google Scholar

10. Kojima, R. & Aika, K. (2001). Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study. Appl. Catal. A 218(1-2), 121-128. DOI: 10.1016/ S0926-860X(01)00626-3.Search in Google Scholar

11. Kojima, R. & Aika, K. (2001). Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 3. Reactant gas treatment. Appl. Catal. A 219(1), 157-170. DOI: 10.1016/ S0926-860X(01)00678-0.10.1016/S0926-860X(01)00678-0Search in Google Scholar

12. Kaleńczuk, R. (1994). Effect of cobalt on the morphology and activity of fused iron catalyst for ammonia synthesis. Appl. Catal. A 112(2), 149-160. DOI: 10.1016/0926-860X(94)80216-5.10.1016/0926-860X(94)80216-5Search in Google Scholar

13. Kaleńczuk, R. (1995). The effect of cobalt on the reactants adsorption and activity of fused iron catalyst for ammonia synthesis. Catal. Lett. 33(3-4), 255-268. DOI:10.1007/BF00814229.10.1007/BF00814229Search in Google Scholar

14. Kaleńczuk, R. (2000). Cobalt promoted fused iron catalyst for ammonia synthesis. Int. J. Inorg. Mater. 2(2-3), 233-239. DOI: 10.1016/S1466-6049(00)00009-X.10.1016/S1466-6049(00)00009-XSearch in Google Scholar

15. Moszyński, D., Jędrzejewski, R., Ziebro, J. & Arabczyk, W. (2010). Surface and catalytic properties of potassium-modified cobalt molybdenum catalysts for ammonia synthesis. Appl. Surf. Sci. 256(17), 5581-5584. DOI: 10.1016/j.apsusc.2009.12.150.10.1016/j.apsusc.2009.12.150Search in Google Scholar

16. Raróg-Pilecka, W., Miśkiewicz, E., Matyszek, M., Kaszkur, Z., Kępiński, L. & Kowalczyk, Z. (2006). Carbon-supported cobalt catalyst for ammonia synthesis: Effect of preparation procedure. J. Catal. 237(1), 207-210. DOI: 10.1016/j. jcat.2005.10.029.Search in Google Scholar

17. Raróg-Pilecka, W., Miśkiewicz, E., Kępiński, L., Kaszkur, Z., Kielar, K. & Kowalczyk, Z. (2006). Ammonia synthesis over barium-promoted cobalt catalysts supported on graphitised carbon. J. Catal. 249(1), 24-33. DOI: 10.1016/j.jcat.2007.03.023.10.1016/j.jcat.2007.03.023Search in Google Scholar

18. Raróg-Pilecka, W., Miśkiewicz, E. & Kowalczyk, Z. (2008). Activated carbon as a template for creating catalyst precursors. Unsupported cobalt catalyst for ammonia synthesis. Catal. Commun. 9(5), 870-873. DOI: 10.1016/j.catcom.2007.09.014.10.1016/j.catcom.2007.09.014Search in Google Scholar

19. Raróg-Pilecka, W., Karolewska, M., Truszkiewicz, E., Iwanek, E. & Mierzwa, B. (2011). Cobalt catalyst doped with cerium and barium obtained by co-precipitation method for ammonia synthesis process. Catal. Lett. 141(5), 678-684. DOI: 10.1007/s10562-011-0564-8.10.1007/s10562-011-0564-8Search in Google Scholar

20. Karolewska, M., Truszkiewicz, E., Mierzwa, B., Kępiński, L. & Raróg-Pilecka, W. (2012). Ammonia synthesis over cobalt catalysts doped with cerium and barium. Effect of the ceria loading. Appl. Catal. A 445-446, 280-286. DOI: 10.1016/j. apcata.2012.08.028.Search in Google Scholar

21. Karolewska, M., Wójcik, P., Truszkiewicz, E., Narowski, R. & Raróg-Pilecka, W. (2012). Co-precipitation as an effective method for preparation of cobalt catalysts for ammonia synthesis. Przem. Chem. 91(11), 2142-2145. [in Polish].Search in Google Scholar

22. Zybert, M., Truszkiewicz, E., Mierzwa, B. & Raróg-Pilecka, W. (2014). Thermal analysis coupled with mass spectrometry as a tool to determine the cobalt content in cobalt catalyst precursors obtained by co-precipitation. Therm. Acta 584, 31-35. DOI: 10.1016/j.tca.2014.03.026.10.1016/j.tca.2014.03.026Search in Google Scholar

23. Reuel, R.C. & Bartholomew, C.H. (1984). The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation. J. Catal. 85(1), 63-77. DOI: 10.1016/0021-9517(84)90110-6.10.1016/0021-9517(84)90110-6Search in Google Scholar

24. Borodziński, A. & Bonarowska, M. (1997). Relation between crystallite size and dispersion on supported metal catalysts. Langmuir 13(21), 5613-5620. DOI: 10.1021/la962103u.10.1021/la962103uSearch in Google Scholar

25. Xue, L., Zhang, C.H., He, H. & Teraoka, Y. (2007). Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst, Appl. Catal. B 75(3-4), 167-174. DOI: 10.1016/j. apcatb.2007.04.013.Search in Google Scholar

26. Wang, H., Ye, J.L., Liu, Y. & Qin, Y.N. (2007). Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods, Catal. Today 129(3-4), 305-312. DOI: 10.1016/j.cattod.2006.10.012.10.1016/j.cattod.2006.10.012Search in Google Scholar

27. Sexton, B., Hughes, A. & Turney, T. (1986). An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. J. Catal. 97(2), 390-406. DOI: 10.1016/0021-9517(86)90011-4.10.1016/0021-9517(86)90011-4Search in Google Scholar

28. Lin, S.S.Y., Kim, D.H. & Ha, S.Y. (2009). Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide. Appl. Catal. A 355(1-2), 69-77. DOI: 10.1016/j.apcata.2008.11.032.10.1016/j.apcata.2008.11.032Search in Google Scholar

29. Kang, M., Song, M.W. & Lee, C.H. (2003). Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Appl. Catal. A 251(1), 143-156. DOI: 10.1016/S0926- -860X(03)00324-7.Search in Google Scholar

30. Lendzion-Bieluń, Z., Jędrzejewski, R. & Arabczyk, W. (2011). The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide. Centr. Eur. J. Chem. 9(5), 834-839. DOI: 10.2478/s11532-011-0059-x. 10.2478/s11532-011-0059-xSearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering