Accesso libero

Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Darensbourg, D.J. (2007). Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 107 (6), 2388-2410. DOI:10.1021/cr068363q.10.1021/cr068363qSearch in Google Scholar

2. Jessop, P.G., Ikariya, T. & Noyori, R. (1999). Homogeneous Catalysis in Supercritical Fluids. Chem. Rev. 99 (2), 475-493. DOI: 10.1021/cr970037a.10.1021/cr970037aSearch in Google Scholar

3. Baiker, A. (1999). Supercritical fluids in heterogeneous catalysis. Chem. Rev. 99 (2), 453-474. DOI: 10.1021/cr970090z.10.1021/cr970090zSearch in Google Scholar

4. Darr, J.A. & Poliakoff, M. (1999). New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99 (2), 495-541. DOI: 10.1021/cr970036i.10.1021/cr970036iSearch in Google Scholar

5. Tundo, P. & Selva, M. (2002). The chemistry of dimethyl carbonate. Acc. Chem. Res. 35 (9), 706-716. DOI: 10.1021/ ar010076f.10.1021/ar010076fSearch in Google Scholar

6. Fukuoka, S., Kawamura, M., Komiya, K., Hachiya, H., Hasegawa, K., Aminaka, M., Okamoto, H., Fukawa, I. & Konno, S. (2003). A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green. Chem. 5, 497-507. DOI: 10.1039/B304963A.10.1039/B304963ASearch in Google Scholar

7. King, S.T. (1997). Oxidative Carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts. Catal. Today 33, 173-182. DOI: 10.1016/S0920-5861(96)00118-6.10.1016/S0920-5861(96)00118-6Search in Google Scholar

8. Sato, Y., Yamamoto, T. & Souma, Y. (2000). Poly- (pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol: catalytic activity and corrosion influence. Catal. Lett. 65, 123-126. DOI: 10.1023/A:1019033725260.10.1023/A:1019033725260Search in Google Scholar

9. Fujita, S.I., Bhanage, B.M., Ikushima, Y. & Arai, M. (2001). Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green. Chem. 3 (2), 87-91. DOI: 10.1039/B100363L.10.1039/b100363lSearch in Google Scholar

10. Choi, J.C., Sakakura, T. & Sako, T. (1999). Reaction of dialkyltin methoxide with carbon dioxide relevant to the mechanism of catalytic carbonate synthesis. J. Am. Chem. Soc. 121, 3793-3794. DOI: 10.1021/ja9900499.10.1021/ja9900499Search in Google Scholar

11. Tomishige, K. & Kunimori, K. (2002). Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl. Catal. A: Gen. 237, 103-109. DOI: 10.1016/S0926-860X(02)00322-8.10.1016/S0926-860X(02)00322-8Search in Google Scholar

12. Isaacs, N.S., O’Sullivan, B. & Verhaelen, C. (1999) High pressure routes to dimethyl carbonate from supercritical carbon dioxide. Tetrahedron 55, 11949-11956. DOI: 10.1016/ S0040-4020(99)00693-6.10.1016/S0040-4020(99)00693-6Search in Google Scholar

13. Sakakura, T., Choi, J.C., Saito, Y., Masuda, T., Sako, Y., Masuda, T., Sako, T. & Oriyama, T. (1999). Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. J. Org. Chem. 64, 4506-4508. DOI: 10.1021/jo990155t.10.1021/jo990155tSearch in Google Scholar

14. Bhanage, B.M., Fujita, S.I., Ikushima, Y., Torii, K. & Arai, M. (2003). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance. Green. Chem. 5, 71-75. DOI: 10.1039/B207750G.10.1039/b207750gSearch in Google Scholar

15. Bhanage, B.M., Fujita, S.I., He, Y.F., Ikushima, Y., Shirai, M., Torii, K. & Arai, M. (2002). Concurrent Synthesis of Dimethyl Carbonate and Ethylene Glycol via Transesterifi- cation of Ethylene Carbonate and Methanol Using Smectite Catalysts Containing Mg and/or Ni. Catal. Lett. 83, 137-141. DOI: 10.1023/A:1021065409888.10.1023/A:1021065409888Search in Google Scholar

16. Sakakura, T. & Kohno, K. (2009). The synthesis of organic carbonates from carbon dioxide. Chem. Comm. 11. 1312-1330. DOI: 10.1039/b819997c.10.1039/b819997cSearch in Google Scholar

17. Bhanage, B.M., Fujita, S.I., Ikushima, Y. & Arai, M. (2001). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl. Catal. A: Gen. 219 (1-2), 259-266. DOI: 10.1016/S0926-860X(01)00698-6.10.1016/S0926-860X(01)00698-6Search in Google Scholar

18. Chang, Y.H., Jiang, T., Han, B.X., Liu, Z.M., Wu, W.Z., Gao, L., Li, J.C., Gao, H.X., Zhao, G.Y. & Huang, J. (2004). One-pot synthesis of dimethyl carbonate and glycols from supercritical CO2, ethylene oxide or propylene oxide, and methanol. Appl. Catal. A: Gen. 263 (2), 179-186. DOI: 10.1016/j.apcata.2003.12.012.10.1016/j.apcata.2003.12.012Search in Google Scholar

19. Fan, B., Qu, B., Chen, Q.C., Wen, Y.C., Cai, L. & Zhang, R. (2011). An improved one-pot synthesis of dimethyl carbonate from propylene oxide, CO2 and methanol. J. Chem. Res. 35, 654-656. DOI: 10.3184/174751911X13192908398731. 10.3184/174751911X13192908398731Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering