INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Ojala, S., Pitkäaho, S ., Laitinen, T., Niskala Koivikko, N., Brahmi, R., Gaálová, J., Matejova, L., Kucherov, A., Päivärinta, S. & Hirschmann, C. (2011). Catalysis in VOC Abatement. Top Catal. 54, 1224-1256. DOI: 10.1007/s11244-011-9747-1.10.1007/s11244-011-9747-1Search in Google Scholar

2. Humans, I. Internation al agency for research on cancer. (1979). IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. From http://monographs.iarc.fr/Search in Google Scholar

3. Pitkäaho, S., Ojala, S ., Kinnunen, T., Silvonen, R. & Keiski, R.L. (2011). Catalytic Oxidation of Dichloromethane and Perchloroethylene: Laboratory and Industrial Scale Studies. Top Catal. 54, 1257-1265. DOI: 10.1007/s11244-011-9748-0.10.1007/s11244-011-9748-0Search in Google Scholar

4. Iijima, S., Nakamura, M., Yokoi, A., Kubota, M., Huang, L. & Matsuda, H. (2011). Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed non-thermal plasma reactor. J. Mater. Cy Waste Manag. 13, 206-212. DOI: 10.1007/s10163-011-0022-0.10.1007/s10163-011-0022-0Search in Google Scholar

5. Pahwa, M., Demers, P. & Ge, C. (2012). Occupational exposure limits for carcinogens in Ontario workplaces: Opportunities to prevent and control exposure. From http://occupationalcancer.ca/2012/occupational-exposure-limits-for-carcinogens-in-ontarioworkplaces-opportunities-to-prevent-and-control-exposure/Search in Google Scholar

6. Subrahmanyam, C., Renk en, A. & Kiwi-Minsker, L. (2007). Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem. Eng. J. 134, 78-83. DOI: 10.1016/j.cej.2007.03.063.10.1016/j.cej.2007.03.063Search in Google Scholar

7. Agnihotri, S., Cal, M. P. & Prien, J. (2004). Destruction of 1, 1, 1-trichloroethane using dielectric barrier discharge nonthermal plasma. J. Environ. Eng. 130, 349-355. DOI: 10.1061/ (ASCE)0733-9372.10.1061/(ASCE)0733-9372(2004)130:3(349)Search in Google Scholar

8. Subrahmanyam, C., Magu reanu, M., Laub, D., Renken, A. & Kiwi-Minsker, L. (2007). Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. J. Phys. Chem. C. 111, 4315-4318. DOI: 10.1021/jp066731o.10.1021/jp066731oSearch in Google Scholar

9. Subrahmanyam, C., Magu reanu, M., Renken, A. & Kiwi- -Minsker, L. (2006). Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl. Catal. B. 65, 150-156. DOI: 10.1016/j.apcatb.2006.01.006.10.1016/j.apcatb.2006.01.006Search in Google Scholar

10. Mo, J., Zhang, Y., Xu , Q., Lamson, J.J. & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos Environ. 43, 2229-2246. DOI: 10.1016/j.atmosenv.2009.01.034.10.1016/j.atmosenv.2009.01.034Search in Google Scholar

11. Vandenbroucke, A.M., Dinh, M.T.N., Giraudon, J.M., Morent, R., De Geyter, N., Lamonier, J.F. & Leys, C. (2011). Qualitative by-product identification of plasma-assisted TCE abatement by mass spectrometry and Fourier-transform infrared spectroscopy. Plasma Chem Plasma Proces. 31, 707-718. DOI: 10.1007/s11090-011-9310-7.10.1007/s11090-011-9310-7Search in Google Scholar

12. Van Durme, J., Dewulf , J., Leys, C. & Van Langenhove, H. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Catal. B. 78, 324-333. DOI: 10.1016/j.apcatb.2007.09.035.10.1016/j.apcatb.2007.09.035Search in Google Scholar

13. Chen, H.L., Lee, H.M. , Chen, S.H., Chang, M.B., Yu, S.J. & Li, S.N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ. Sci. Technol. 43, 2216-2227. DOI: 10.1021/es802679b.10.1021/es802679b19452866Search in Google Scholar

14. Augugliaro, V., Loddo , V., Palmisano, G., Palmisano, L. & Pagliaro, M. (2010). Clean by light irradiation. RSC Pub. Royal Society of Chemistry.Search in Google Scholar

15. Oda, T., Kuramochi, H . & Ono, R. (2008). Trichloroethylene decomposition by the nonthermal plasma Combined with manganese-dioxide supported alumina. Int. J. Plasma Environ. Sci. Technol. 2, 50-55. DOI: 10.1541/ieejfms.127.145.10.1541/ieejfms.127.145Search in Google Scholar

16. Mok, Y., Lee, S.B., O h, J.H., Ra, K.S. & Sung, B.H. (2008). Abatement of trichloromethane by using nonthermal plasma reactors. Plasma Chem Plasma Proces. 28, 663-676. DOI: 10.1007/s11090-008-9151-1.10.1007/s11090-008-9151-1Search in Google Scholar

17. Indarto, A., Choi, J. -W., Lee, H. & Song, H.K. (2006). Treatment of CCl4 and CHCl3 emission in a gliding-arc plasma. Plasma Devices Oper. 14, 1-14. DOI: 10.1080/10519990500493833.10.1080/10519990500493833Search in Google Scholar

18. Hu, Y. & Yuan, C. (2 006). Low-temperature preparation of photocatalytic TiO2 thin films on polymer substrates by direct deposition from anatase sol. J. Mater. Sci. Technol. 22, 239-244. DOI: 10.1016/j.jcrysgro.2004.10.146.10.1016/j.jcrysgro.2004.10.146Search in Google Scholar

19. Carp, O., Huisman, C. & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progr. Sol. Stat. Chem. 32, 33-177. DOI: 10.1016/j.progsolidstchem.2004.08.001.10.1016/j.progsolidstchem.2004.08.001Search in Google Scholar

20. Liu, Y., Yang, S., Ho ng, J. & Sun, C. (2007). Lowtemperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. J. Haz. Mat. 142, 208-215. DOI: 10.1016/j.jhazmat.2006.08.020.10.1016/j.jhazmat.2006.08.02016982137Search in Google Scholar

21. Magureanu, M., Mandac he, N., Parvulescu, V., Subrahmanyam, C., Renken, A. & Kiwi-Minsker, L. (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl. Catal. B. 74, 270-277. DOI: 10.1016/j.apcatb.2007.02.019.10.1016/j.apcatb.2007.02.019Search in Google Scholar

22. Twigg, M.V. (2006). R oles of catalytic oxidation in control of vehicle exhaust emissions. Catal Today. 117, 407-418. DOI: 10.1016/j.cattod.2006.06.044.10.1016/j.cattod.2006.06.044Search in Google Scholar

23. Marotta, E., Scorrano , G. & Paradisi, C. (2005). Ionic reactions of chlorinated volatile organic compounds in air plasma at atmospheric pressure. Plasma Process Polym. 2, 209-217. DOI: 10.1002/ppap.200400047.10.1002/ppap.200400047Search in Google Scholar

24. Francke, K.P., Miessn er, H. & Rudolph, R. (2000). Cleaning of air streams from organic pollutants by plasma-catalytic oxidation. Plasma Chem Plasma Proces. 20, 393-403. DOI: 10.1023/A:1007048428975.10.1023/A:1007048428975Search in Google Scholar

25. Kim, H.H. & Ogata, A . (2011). Nonthermal plasma activates catalyst: from current understanding and future prospects. European Phys. J. App. Phys. 55. DOI: 10.1051/epjap/2011100444.10.1051/epjap/2011100444Search in Google Scholar

26. Karuppiah, J., Reddy, E.L., Reddy, P.M.K., Ramaraju, B. & Subrahmanyam, C. (2013). Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene. Int. J. Environ. Sci. Technol. 1-8. DOI: 10.1007/s13762-013-0218-z.10.1007/s13762-013-0218-zSearch in Google Scholar

27. Matsumoto, S.J. (2000 ). Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst. Cattech 4, 102-109. DOI: 10.1023/A:1011951415060.10.1023/A:1011951415060Search in Google Scholar

28. Kang, C.S., You, Y. J., Kim, K.J., Kim, T.h., Ahn, S.J., Chung, K.H., Park, N.C., Kimura, S. & Ahn, H.G. (2006). Selective catalytic reduction of NOx with propene over double wash-coat monolith catalysts. Catal Today. 111, 229-235. DOI: 10.1016/j.cattod.2005.10.031.10.1016/j.cattod.2005.10.031Search in Google Scholar

29. Shelef, M. (1995). Se lective catalytic reduction of NOx with N-free reductants. Chem. Review. 95, 209-225. DOI: 10.1021/cr00033a008.10.1021/cr00033a008Search in Google Scholar

30. Centi, G., Ciambelli, P., Perathoner, S. & Russo, P. (2002). Environmental catalysis: trends and outlook. Catal Today. 75, 3-15. DOI: 10.1016/S0920-5861(02)00037-8.10.1016/S0920-5861(02)00037-8Search in Google Scholar

31. Roy, S., Hegde, M. & Madras, G. (2009). Catalysis for NOx abatement. Applied Energy. 86, 2283-2297. DOI: 10.1016/j. apenergy.2009.03.022.Search in Google Scholar

32. Ozawa, Y. & Urashima , K. (2006). Recent Development Trends in Catalyst Technologies for Reducing Nitrogen Oxide Emissions. Science and Technology Trends.Search in Google Scholar

33. Lee, W.J., Chen, C. Y., Lin, W.C., Wang, Y.T. & Chin, C.J. (1996). Phosgene formation from the decomposition of 1, 1-C2H2Cl2 contained gas in an RF plasma reactor. J. Haz. Mat. 48, 51-67. DOI: 10.1016/0304-3894(95)00145-X.10.1016/0304-3894(95)00145-XSearch in Google Scholar

34. Indarto, A., Choi, J. -W., Lee, H. & Song, H.-K. (2006). Decomposition of CCl4 and CHCl3 on gliding arc plasma. J. Environ Sci. 18, 83-89. DOI: 1001-0742(2006)01-0083-07.Search in Google Scholar

35. Főglein, K.A., Szabó, P.T., Babievskaya, I.Z. & Szépvölgyi, J. (2005). Comparative study on the decomposition of chloroform in thermal and cold plasma. Plasma Chem Plasma Proces. 25, 289-302. DOI: 10.1007/s11090-004-3041-y.10.1007/s11090-004-3041-ySearch in Google Scholar

36. Indarto, A., Choi, J. W., Lee, H. & Song, H.K. (2008). Decomposition of greenhouse gases by plasma. Environ Chem. Letters. 6, 215-222. DOI: 10.1007/s10311-008-0160-3.10.1007/s10311-008-0160-3Search in Google Scholar

37. Schmidt-Szałowski, K. , Krawczyk, K., Sentek, J., Ulejczyk, B., Górska, A. & Młotek, M. (2011). Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC. Chem. Eng. Res. Design. 89, 2643-2651. DOI: 10.1016/j.cherd.2011.06.018.10.1016/j.cherd.2011.06.018Search in Google Scholar

38. Futamura, S. & Yamam oto, T. (1997). Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE T Industry Applications. 33, 447-453. DOI: 10.1109/28.568009.10.1109/28.568009Search in Google Scholar

39. Evans, D., Rosocha, L .A., Anderson, G.K., Coogan, J.J. & Kushner, M.J. (1993). Plasma remediation of trichloroethylene in silent discharge plasmas. J. Appl. Phys. 74, 5378-5386. DOI: 10.1063/1.354241.10.1063/1.354241Search in Google Scholar

40. Vandenbroucke, A., Mo rent, R., De Geyter, N. & Leys, C. (2011). Decomposition of Trichloroethylene with Plasmacatalysis: A review. J. Adv. Oxid. Technol. 14, 165-173.Search in Google Scholar

41. Nakagawa, Y., Fujisaw a, H., Ono, R. & Oda, T. (2010). Dilute Trichloroethylene Decomposition by using High Pressure Non-Thermal Plasma: Humidity Effects. In Industry Applications Society Annual Meeting (IAS), IEEE. pp 1-4.10.1109/IAS.2010.5615418Search in Google Scholar

42. Kovács, T., Turányi, T. & Szépvölgyi, J. (2010). CCl4 Decomposition in RF Thermal Plasma in Inert and Oxidative Environments. Plasma Chem Plasma Proces. 30, 281-286. DOI: 10.1007/s11090-010-9219-6.10.1007/s11090-010-9219-6Search in Google Scholar

43. Han, S.-B. & Oda, T. (2007). Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process. Plasma Sour. Sci. Technol. 16, 413. DOI: 10.1088/0963-0252/16/2/026.10.1088/0963-0252/16/2/026Search in Google Scholar

44. Sivachandiran, L., Ka ruppiah, J. & Subrahmanyam, C. (2012). DBD plasma reactor for oxidative decomposition of Chlorobenzene. Int. J. Chem. React. Eng. 10. DOI: 10.1515/1542-6580.2785.10.1515/1542-6580.2785Search in Google Scholar

45. Snyder, H.R. & Ander son, G.K. (1998). Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene. IEEE T Plasma Sci. 26, 1695-1699. DOI: 10.1109/27.747888.10.1109/27.747888Search in Google Scholar

46. Magureanu, M., Mandac he, N. & Parvulescu, V. (2007). Chlorinated organic compounds decomposition in a dielectric barrier discharge. Plasma Chem Plasma Process. 27, 679-690. DOI: 10.1007/s11090-007-9103-1. 10.1007/s11090-007-9103-1Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering