INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Gavaskar, A. (1999). Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 68, 41-71.10.1016/S0304-3894(99)00031-XSearch in Google Scholar

2. Yong, R.M. & Mulligan, C.N. (2004). Natural attenuation of contaminants in soils. Boca Raton, FL, USA: Lewis Publishers.Search in Google Scholar

3. Nassar, N.N. (2012). Kinetics, Equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Engin. 90, 1231-1238. DOI: 10.1002/cjce.20613.10.1002/cjce.20613Search in Google Scholar

4. Ku, Y. & Jung, I.L. (2001). Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35, 135-14. DOI: 10.1016/ S0043-1354(00)00098-1.10.1016/S0043-1354(00)00098-1Search in Google Scholar

5. Zhu, S., He, W., Li, G., Zhou, X., Zhang, X. & Huang, J. (2012). Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation.10.1016/S1003-6326(11)61460-XSearch in Google Scholar

T. Nonferr. Metal. Soc. 22, 2274−2281. DOI: 10.1016/ S1003-6326(11)61460-X.Search in Google Scholar

6. Smara, A.R., Delimi, R., Chainet, E. & Sandeaux, J. (2007). Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/ electrodialysis processes. Sep. Sci. Technol. 57, 103-110. DOI: 10.1016/j.seppur.2007.03.012.10.1016/j.seppur.2007.03.012Search in Google Scholar

7. Dermentzis, K.I., Davidis, A.E., Dermentzi A.S. & Chatzichristou, C.D. (2010). An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions. Water Sci. Technol. 62 (8), 1947-1953. DOI: 10.2166/wst.2010.547.10.2166/wst.2010.54720962412Search in Google Scholar

8. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I. & Moreno-Virgen, M.R. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures, J. Environ. Manage. 116, 213-221. DOI: 10.1016/j.jenvman.2012.12.010.10.1016/j.jenvman.2012.12.01023321372Search in Google Scholar

9. Lee, T. (2011). Microwave preparation of raw vermiculite for use in removal of copper ions from aqueous solutions. Enivorn. Technol. 32, 1195-1203. DOI:10.1080/09593330.201 0.531055.Search in Google Scholar

10. Treviño-Corderoa, H., Juárez-Aguilara, L.G., Mendoza- -Castilloa, D.I., Hernández-Montoyaa, V., Bonilla-Petricioleta, A. & Montes-Moránb, M.A. (2013). Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water, Ind. Crop. Prod. 42, 315-323. DOI:10.1016/j.indcrop.2012.05.029.10.1016/j.indcrop.2012.05.029Search in Google Scholar

11. Landaburu-Aguirre, J., García, V., Pongrácz, E. & Keiski, R.L. (2009). The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240, 262-269. DOI:10.1016/j. desal.2007.11.077.Search in Google Scholar

12. Sampera, E., Rodrígueza, M., De la Rubia, M.A. & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol. 65, 337-342. DOI:10.1016/j.seppur.2008.11.013.10.1016/j.seppur.2008.11.013Search in Google Scholar

13. Gavaskar, A., Gupta, N., Sass, B., Janosy, R. & Hicks, J. (2000). Design guidance for application of permeable reactive barriers for groundwater remediation. Columbus, Ohio. Retrived January 16, 2013 from CLU-IN: http://www.cluin.org/conf/itrc/ prbll_061506/prb-2.pdf10.21236/ADA379980Search in Google Scholar

14. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92(3), 407-418. DOI: 10.1016/j.jenvman.2010.11.011.10.1016/j.jenvman.2010.11.011Search in Google Scholar

15. Naftz, D.L., Morrison, S.J., Fuller, C.C. & Davis, J.A. (2002). Handbook of groundwater remediation using permeable reactive barriers: application to radionuclides, trace metal, and nutrients. Amsterdam, Denmark: Elsevier Science.Search in Google Scholar

16. Kenneke, J.F. & McCutcheon, S.C. (2003). Use of pretreatment zone and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer. Environ. Sci. Technol. 37(12), 2829-2835. DOI:10.1021/es0207302.10.1021/es0207302Search in Google Scholar

17. Wilkin, R.T., Su, C.M., Ford, R.G. & Paul, C.J. (2005). Chromium-removal processes during groundwater remediation by a zero-valent iron permeable reactive barrier. Environ. Sci.Technol. 39, 4599-4605. DOI: 10.1021/es050157x.10.1021/es050157xSearch in Google Scholar

18. Velazquez-Jimenez, L.H., Pavlick, A. & Rangel-Mendez, J.R. (2013). Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind. Crop. Prod. 43, 200-206. DOI: 10.1016/j. indcrop.2012.06.049.Search in Google Scholar

19. Doskočil, L. & Pekař, M. (2012). Removal of metal ions from multi-component mixture using natural lignite. Fuel Process. Technol. 101, 29-34. DOI: 10.1016/j.fuproc.2012.02.010.10.1016/j.fuproc.2012.02.010Search in Google Scholar

20. Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem. Eng. J. 172, 361-368. DOI: 10.1016/j. cej.2011.06.017.Search in Google Scholar

21. Xue, Y., Hou, H. & Zhu, S. (2009). Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. J. Hazard. Mater. 162, 391-401. DOI: 10.1016/j.jhazmat.2008.05.072.10.1016/j.jhazmat.2008.05.072Search in Google Scholar

22. Ho, Y.S., Porter, J.F. & Mckay, G. (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Poll. 141, 1-33.Search in Google Scholar

23. Esmaeili, A., Kalantari, M. & Saremnia, B. (2012). Biosorption of Pb (II) from aqueous solutions by modified of two kinds of marine algae, Sargassum glaucescens and Gracilaria Corticata. Pol. J. Chem. Tech. 14(2), 22-28. DOI: 10.2478/ v10026-012-0066-5.10.2478/v10026-012-0066-5Search in Google Scholar

24. Wilkin, R.T. & McNeil, M.S. (2003). Laboratory evaluation of zero-valent iron to treat water impact by acid mine drainage. Chemosphere 53, 715-725. DOI:10.1016/S0045-6535(03)00512-5.10.1016/S0045-6535(03)00512-5Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering