Accesso libero

Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa: potential for controlling cyanobacterial blooms and transfer of toxins

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Belykh, O.I., Dmitrieva, O.A., Gladkikh, A.S. & Sorokovikova, E.G. (2013). Identification of toxigenic cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea). Oceanology 53(1): 71–79.BelykhO.I.DmitrievaO.A.GladkikhA.S.SorokovikovaE.G.2013Identification of toxigenic cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea)Oceanology531717910.1134/S0001437013010025Search in Google Scholar

Błędzki, L.A. & Rybak, J.I. (2016). Freshwater Crustacean Zooplankton of Europe, Cladocera & Copepoda (Calanoida, Cyclopoida), Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Springer, XVI.BłędzkiL.A.RybakJ.I.2016Freshwater Crustacean Zooplankton of Europe, Cladocera & Copepoda (Calanoida, Cyclopoida), Key to species identification, with notes on ecology, distribution, methods and introduction to data analysisSpringerXVI10.1007/978-3-319-29871-9Search in Google Scholar

Carmichael, W.W. (1996).Toxic Microcystis and the environment. In M.F. Watanabe, K.-I. Harada, W.W. Carmichael & H. Fujiki (Eds.), Toxic Microcystis (pp. 1–11). CRC Press.CarmichaelW.W.1996Toxic Microcystis and the environmentWatanabeM.F.HaradaK.-I.CarmichaelW.W.FujikiH.Toxic Microcystis111CRC PressSearch in Google Scholar

Carmichael, W.W. & An, J. (1999). Using of enzyme linked immunosobent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystin and nodularin. J. Nat. Toxins 7(6): 377–385.CarmichaelW.W.AnJ.1999Using of enzyme linked immunosobent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystin and nodularinJ. Nat. Toxins7637738510.1002/1522-7189(199911/12)7:6<377::AID-NT80>3.0.CO;2-8Search in Google Scholar

Chen, W., Song, L., Ou, D. & Gan, N. (2005). Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR. Environ. Toxicol. 20(3): 323–330.ChenW.SongL.OuD.GanN.2005Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LREnviron. Toxicol.20332333010.1002/tox.20108Search in Google Scholar

DeMott, W.R. (1990). Retention efficiency perceptual bias, and active choice as mechanisms of food selection by suspension-feeding zooplankton. In R.N. Hughes (Ed.), Behavorial Mechanisms of Food Selection (pp. 569–594). NATO ASI Series, Series G: Ecological Series. Springer, New York.DeMottW.R.1990Retention efficiency perceptual bias, and active choice as mechanisms of food selection by suspension-feeding zooplanktonHughesR.N.Behavorial Mechanisms of Food Selection569594NATO ASI Series, Series G: Ecological Series. SpringerNew York10.1007/978-3-642-75118-9_28Search in Google Scholar

DeMott, W.R., Zhang, Q.X. & Carmichael, W.W. (1991). Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and 3 species of Daphnia. Limnol. Oceanogr. 36(7): 1346–1357.DeMottW.R.ZhangQ.X.CarmichaelW.W.1991Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and 3 species of Daphnia. Limnol. Oceanogr.36713461357Search in Google Scholar

Devetter, M. & Seda, J, (2006). Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Rimov reservoir in spring. Int. Rev. Hydrobiol. 91(1): 101–111.DevetterM.SedaJ2006Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Rimov reservoir in springInt. Rev. Hydrobiol.91110111110.1002/iroh.200510810Search in Google Scholar

Engström, J., Koski, M., Viitasalo, M., Reinikainen, M., Repka, S. et al. (2000). Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. J. Plankton Res. 22(7):1403–1409.EngströmJ.KoskiM.ViitasaloM.ReinikainenM.RepkaS.2000Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia spJ. Plankton Res.2271403140910.1093/plankt/22.7.1403Search in Google Scholar

Engstrom-Ost, J., Hogfors, H., El-Shehawy, R., Stasio, B.D., Vehmaa, A. et al. (2011). Toxin producing cyanobacterium Nodularia spumigena, potential competitors and grazers: testing mechanisms of reciprocal interactions. Aquat. Microb. Ecol. 62(1): 39–48.Engstrom-OstJ.HogforsH.El-ShehawyR.StasioB.D.VehmaaA.2011Toxin producing cyanobacterium Nodularia spumigena, potential competitors and grazers: testing mechanisms of reciprocal interactionsAquat. Microb. Ecol.621394810.3354/ame01456Search in Google Scholar

Fulton, R.S. & Paerl, H. (1987). Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol. Oceanogr. 32(3): 634–644.FultonR.S.PaerlH.1987Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) bloomsLimnol. Oceanogr.32363464410.4319/lo.1987.32.3.0634Search in Google Scholar

Ger, K.A., The, S.J., Baxa, DV, Lesmeister S. & Goldman, C.R. (2010). The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco estuary. Freshw. Biol. 55(7): 1548–1559.GerK.A.TheS.J.BaxaDVLesmeisterS.GoldmanC.R.2010The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco estuaryFreshw. Biol.5571548155910.1111/j.1365-2427.2009.02367.xSearch in Google Scholar

Gorokhova, E. & Engstrom-Ost, J. (2009). Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers. J. Plankton Res. 31(10): 1235–1247.GorokhovaE.Engstrom-OstJ.2009Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazersJ. Plankton Res.31101235124710.1093/plankt/fbp060Search in Google Scholar

Herrera, N.A., Echeverri, L.F. & Ferrao-Filho, A.S. (2015). Effects of phytoplankton extracts containing the toxin microcystin- LR on the survival and reproduction of cladocerans. Toxicon 95(1): 38–45.HerreraN.A.EcheverriL.F.Ferrao-FilhoA.S.2015Effects of phytoplankton extracts containing the toxin microcystin- LR on the survival and reproduction of cladoceransToxicon951384510.1016/j.toxicon.2014.12.01625553593Search in Google Scholar

Hötzel, G. & Croome, R. (1999). A Phytoplankton Methods Manual for Australian Freshwaters, LWRRDC Occasional Paper 22/29, Land and Water Research and Development Corporation: Canberra.HötzelG.CroomeR.1999A Phytoplankton Methods Manual for Australian FreshwatersLWRRDC Occasional Paper 22/29Land and Water Research and Development CorporationCanberraSearch in Google Scholar

Ibelings, B.W., Bruning, K., De Jonge, J., Wolfstein, K., Pires, L.M. et al. (2005). Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microb. Ecol. 49(4): 487–500.IbelingsB.W.BruningK.De JongeJ.WolfsteinK.PiresL.M.2005Distribution of microcystins in a lake foodweb: no evidence for biomagnificationMicrob. Ecol.49448750010.1007/s00248-004-0014-x16052377Search in Google Scholar

Jang, M.H., Ha, K., Joo, G.J. & Takamura, N. (2003). Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshw. Biol. 48(9): 1540–1550.JangM.H.HaK.JooG.J.TakamuraN.2003Toxin production of cyanobacteria is increased by exposure to zooplanktonFreshw. Biol.4891540155010.1046/j.1365-2427.2003.01107.xSearch in Google Scholar

Johnson, K.M. (1999). Microcystins in New Hampshire lakes and bioaccumulation in zooplankton. Unpublished Master dissertation. University of New Hampshire, Durham, NH, USA.JohnsonK.M.1999Microcystins in New Hampshire lakes and bioaccumulation in zooplanktonUnpublished Master dissertation.University of New HampshireDurham, NH, USASearch in Google Scholar

Kaczkowski, Z., Wojtal-Frankiewicz, A., Gągała. I., Mankiewicz- Boczek. J., Jaskulska. A. et al. (2017). Relationships between cyanobacteria, zooplankton and fish in sub-bloom conditions in the Sulejów Reservoir. J. Limnol. 76(2): 380–396.KaczkowskiZ.Wojtal-FrankiewiczA.GągałaI.Mankiewicz-BoczekJ.JaskulskaA.2017Relationships between cyanobacteria, zooplankton and fish in sub-bloom conditions in the Sulejów ReservoirrJ. Limnol.762380396Search in Google Scholar

Kosiba, J., Krztoń, W. & Wilk-Woźniak, E. (2018). Effect of microcystins on proto- and metazooplankton is more evident in artifficial than in natural waterbodies. Microb. Ecol. 75(2): 293–302. 10.1007/s00248-017-1058-z.KosibaJ.KrztońW.Wilk-WoźniakE.2018Effect of microcystins on proto- and metazooplankton is more evident in artifficial than in natural waterbodiesMicrob. Ecol.75229330210.1007/s00248-017-1058-z574260628866755Open DOISearch in Google Scholar

Koski, M., Schmidt, K., Engström-Öst, J., Viitasalo, M., Jónasdóttir. S.H. et al. (2002). Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Oceanogr. 47(3): 878–885.KoskiM.SchmidtK.Engström-ÖstJ.ViitasaloM.JónasdóttirS.H.2002Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Oceanogr.473878885Search in Google Scholar

Kozlowski-Suzuki B., Karjalainen M., Lehtiniemi M., Engstrom-Ost J., Koski M. et al. (2003). Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacterium Nodularia spumigena. Marine Ecol. Prog. Series 249: 237–249.Kozlowski-SuzukiB.KarjalainenM.LehtiniemiM.Engstrom-OstJ.KoskiM.2003Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacteriumNodularia spumigena. Marine Ecol. Prog. Series24923724910.3354/meps249237Search in Google Scholar

Lehman, P.W., The, S.J., Boyer, G.L., Nobriga, M.L., Bass, E. et al. (2010). Initial impacts of Microcystis aeruginosa blooms on the aquatic food web in the San Francisco Estuary. Hydrobiol. 637(1): 229–248.LehmanP.W.TheS.J.BoyerG.L.NobrigaM.L.BassE.2010Initial impacts of Microcystis aeruginosa blooms on the aquatic food web in the San Francisco EstuaryHydrobiol.637122924810.1007/s10750-009-9999-ySearch in Google Scholar

Lürling, M. (2003). Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol. Oceanogr. 48(6): 2214–2220.LürlingM.2003Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol. Oceanogr.48622142220Search in Google Scholar

Mohamed, Z.A. (2001). Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals. Ecotoxicol. Environ. Safe. 50(1): 4–8.MohamedZ.A.2001Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canalsEcotoxicol. Environ. Safe.5014810.1006/eesa.2001.204711534946Search in Google Scholar

Mohamed, Z.A., Carmichael, W.W. & Hussein, A.A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ. Toxicol. 18(2): 137–141.MohamedZ.A.CarmichaelW.W.HusseinA.A.2003Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloomEnviron. Toxicol.18213714110.1002/tox.1011112635102Search in Google Scholar

Mohamed, Z.A. & Al-Shehri AM. (2013). Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. Ecotoxicol. Environ. Safe. 96: 48–52MohamedZ.A.Al-ShehriAM.2013Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotansEcotoxicol. Environ. Safe.96485210.1016/j.ecoenv.2013.06.01523856124Search in Google Scholar

Oberhaus, L., Gélinas, M., Pinel-Alloul, B., Ghadouani, A. & Humbert, J.F. (2007). Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. J. Plankton Res. 29(10): 827–838.OberhausL.GélinasM.Pinel-AlloulB.GhadouaniA.HumbertJ.F.2007Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystinsJ. Plankton Res.291082783810.1093/plankt/fbm062Search in Google Scholar

Paerl, H.W. & Huisman, J. (2008). Blooms like it hot. Science 320(5872): 57–58.PaerlH.W.HuismanJ.2008Blooms like it hotScience3205872575810.1126/science.115539818388279Search in Google Scholar

Paes, T.A.S.V., Costa, I.A.S., Silva, A.P.C. & Eskinazi-Sant’Anna, E.M. (2016). Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs? Brazil. J. Biol. 76(2): 450–460.PaesT.A.S.V.CostaI.A.S.SilvaA.P.C.Eskinazi-Sant’AnnaE.M.2016Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?Brazil. J. Biol.76245046010.1590/1519-6984.2101426959954Search in Google Scholar

Panosso, R., Carlson, P., Kozlowsky-Suzuki, B., Azevedo, S.M.F.O. & Granéli, E. (2003). Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacteria strains. J. Plankton Res. 25(9): 1169–1175.PanossoR.CarlsonP.Kozlowsky-SuzukiB.AzevedoS.M.F.O.GranéliE.2003Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacteria strainsJ. Plankton Res.2591169117510.1093/plankt/25.9.1169Search in Google Scholar

Piasecki, W., Goodwin, A.E., Eiras, J.C. & Nowak, B.F. (2004). Importance of copepoda in freshwater in freshwater aquaculture. Zool. Stud. 43(2): 193–205.PiaseckiW.GoodwinA.E.EirasJ.C.NowakB.F.2004Importance of copepoda in freshwater in freshwater aquacultureZool. Stud.432193205Search in Google Scholar

Sarnelle, O. & Wilson, A.E. (2005). Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol. Oceanogr. 34(5): 673–687.SarnelleO.WilsonA.E.2005Local adaptation of Daphnia pulicaria to toxic cyanobacteriaLimnol. Oceanogr.34567368710.4319/lo.2005.50.5.1565Search in Google Scholar

Selander, E., Kubanek, J., Hamberg, M., Andersson, M.X., Cervin, G. et al. (2015). Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc. Natl. Acad. Sci. USA 112(20): 6395–6400.SelanderE.KubanekJ.HambergM.AnderssonM.X.CervinG.2015Predator lipids induce paralytic shellfish toxins in bloom-forming algaeProc. Natl. Acad. Sci. USA112206395640010.1073/pnas.1420154112444333025918403Search in Google Scholar

Shams, S., Cerasino, L., Salmaso, N. & Dietrich, D.R. (2014). Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management. Aquat. Toxicol. 148: 9–15.ShamsS.CerasinoL.SalmasoN.DietrichD.R.2014Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water managementAquat. Toxicol.14891510.1016/j.aquatox.2013.12.02024440453Search in Google Scholar

Smutná, M., Babica, P., Jarque, S., Hilscherova, K., Marsalek, B. et al. (2014). Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. Toxicon 79: 11–18.SmutnáM.BabicaP.JarqueS.HilscherovaK.MarsalekB.2014Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystinsToxicon79111810.1016/j.toxicon.2013.12.00924412459Search in Google Scholar

Sotton, B., Guillard, J., Anneville, O., Maréchal, M., Savichtcheva, O. et al. (2014). Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 466–467: 152–163.SottonB.GuillardJ.AnnevilleO.MaréchalM.SavichtchevaO.2014Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contaminationSci. Total Environ.466–46715216310.1016/j.scitotenv.2013.07.02023906853Search in Google Scholar

Urrutia-Cordero, P., Ekvall, M.K. & Hansson, L.-A. (2015). Response of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshw. Biol. 60(5): 960–972.Urrutia-CorderoP.EkvallM.K.HanssonL.-A.2015Response of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom?Freshw. Biol.60596097210.1111/fwb.12555Search in Google Scholar

Wang, X.D., Qin, B.Q., Gao, G. & Paerl, H.W. (2010). Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J. Plankton Res. 32(4): 457–470.WangX.D.QinB.Q.GaoG.PaerlH.W.2010Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formationJ. Plankton Res.32445747010.1093/plankt/fbp143Search in Google Scholar

Watanabe, M.F.(1996). Production of microcystins. In M.F. Watanabe, K.-I. Harada, W.W. Carmichael & H. Fujiki (Eds.), Toxic Microcystis (pp. 35–56). CRC Press.WatanabeM.F.1996Production of microcystinsWatanabeM.F.HaradaK.-I.CarmichaelW.W.FujikiH.Toxic Microcystis3556CRC PressSearch in Google Scholar

Wilson, A.E. & Hay, M.E. (2007). A direct test of cyanobacterial chemical defense: variable effects of microcyst in treated food on two Daphnia pulicaria clones. Limnol. Oceanogr. 52(4): 1467–1479.WilsonA.E.HayM.E.2007A direct test of cyanobacterial chemical defense: variable effects of microcyst in treated food on two Daphnia pulicaria clonesLimnol. Oceanogr.5241467147910.4319/lo.2007.52.4.1467Search in Google Scholar

Wilson, A.E., Sarnelle, O. & Tillmanns, A.R. (2006). Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta analyses of laboratory experiments. Limnol. Oceanogr. 51(4): 1915–1924.WilsonA.E.SarnelleO.TillmannsA.R.2006Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta analyses of laboratory experimentsLimnol. Oceanogr.5141915192410.4319/lo.2006.51.4.1915Search in Google Scholar

Wojtal-Frankiewicz, A., Bernasinska, J., Jurczak, T., Gwozdzinski, K., Frankiewicz, P. et al. (2013). Microcystin assimilation and detoxification by Daphnia spp. in two ecosystems of different cyanotoxin concentrations. J. Limnol. 72(1): 154–171. 10.4081/jlimnol.2013.e13.Wojtal-FrankiewiczA.BernasinskaJ.JurczakT.GwozdzinskiK.FrankiewiczP.2013Microcystin assimilation and detoxification by Daphnia spp. in two ecosystems of different cyanotoxin concentrationsJ. Limnol.72115417110.4081/jlimnol.2013.e13Open DOISearch in Google Scholar

Work, K.A. & Havens, K.A. (2003). Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. J. Plankton Res. 25: 1301–1307.WorkK.A.HavensK.A.2003Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lakeJ. Plankton Res.251301130710.1093/plankt/fbg092Search in Google Scholar

Żak, A. & Kosakowska, A. (2016). Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions. Oceanol. Hydrobiol. Stud. 45(1): 131–143.ŻakA.KosakowskaA.2016Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactionsOceanol. Hydrobiol. Stud.45113114310.1515/ohs-2016-0013Search in Google Scholar

Zhang, D., Xie, P., Chen, J., Dai, M., Qiu, T. et al. (2009). Determination of microcystin-LR and its metabolites in snail (Bellamya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from Lake Taihu, China. Chemosphere 76(7): 974–981.ZhangD.XieP.ChenJ.DaiM.QiuT.2009Determination of microcystin-LR and its metabolites in snail (Bellamya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from Lake Taihu, ChinaChemosphere76797498110.1016/j.chemosphere.2009.04.03419473685Search in Google Scholar

Zurawell, R.W., Chen, H., Burke, J.M. & Prepas E.E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8(1): 1–37.ZurawellR.W.ChenH.BurkeJ.M.PrepasE.E.2005Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environmentsJ. Toxicol. Environ. Health B8113710.1080/1093740059088941215762553Search in Google Scholar

eISSN:
1897-3191
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, other, Geosciences, Life Sciences