Accesso libero

Annual production to biomass (P/B) ratios of pelagic ciliates in different temperate waters

, , , ,  e   
22 set 2016
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Aberle, N., Lengfellner, K. & Sommer, U. (2007). Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150: 668-681. 10.1007/s00442-006-0540-y. AberleN.LengfellnerK.SommerU.2007Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warmingOecologia15066868110.1007/s00442-006-0540-yOpen DOISearch in Google Scholar

Azam, F., Fenchel, T., Field, J.D., Gray, J.S., Meyer-Reil, L.A. et al. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263. AzamF.FenchelT.FieldJ.D.GrayJ.S.Meyer-ReilL.A.et al1983The ecological role of water-column microbes in the seaMar. Ecol. Prog. Ser1025726310.3354/meps010257Search in Google Scholar

Baretta-Bekker, J.G., Baretta, J.W. & Rasmussen, E.K. (1995). The microbial food web in the European Regional Seas Ecosystem Model. Neth. J. Sea Res. 33: 363-379. Baretta-BekkerJ.G.BarettaJ.W.RasmussenE.K.1995The microbial food web in the European Regional Seas Ecosystem ModelNeth. J. Sea Res3336337910.1016/0077-7579(95)90053-5Search in Google Scholar

Beaver, J.R. & Crisman, T.L. (1982). The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253. BeaverJ.R.CrismanT.L.1982The trophic response of ciliated protozoans in freshwater lakesLimnol. Oceanogr2724625310.4319/lo.1982.27.2.0246Search in Google Scholar

Buitenhuis, E.T., Rivkin, R.B., Sailley, S. & Le Quéré, C. (2010). Biogeochemical fluxes through microzooplankton. Global Biogeochem. Cy. 24, GB4015. 10.1029/2009GB003601. BuitenhuisE.T.RivkinR.B.SailleyS.Le QuéréC.2010Biogeochemical fluxes through microzooplanktonGlobal Biogeochem. Cy24GB401510.1029/2009GB003601Open DOISearch in Google Scholar

Calbet, A. (2008). The trophic roles of microzooplankton in marine systems. J. Plankton Res. 65: 325-331. CalbetA.2008The trophic roles of microzooplankton in marine systemsJ. Plankton Res6532533110.1093/icesjms/fsn013Search in Google Scholar

Calbet, A. & Landry, M.R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49: 51-57. CalbetA.LandryM.R.2004Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systemsLimnol. Oceanogr49515710.4319/lo.2004.49.1.0051Search in Google Scholar

Calbet, A. & Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38: 157-167. 10.3354/ame038157. CalbetA.SaizE.2005The ciliate-copepod link in marine ecosystemsAquat. Microb. Ecol3815716710.3354/ame038157Open DOISearch in Google Scholar

Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. (2001). Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174. CarriasJ.-F.ThouvenotA.AmblardC.Sime-NgandoT.2001Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, FranceAquat. Microb. Ecol2416317410.3354/ame024163Search in Google Scholar

Carrick, H.J., Fahnenstiel, G.L. & Taylor, W.D. (1992). Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vivo comparison and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235. CarrickH.J.FahnenstielG.L.TaylorW.D.1992Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vivo comparison and importance to food web dynamicsLimnol. Oceanogr371221123510.4319/lo.1992.37.6.1221Search in Google Scholar

Carrick, H. (2005). An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study). Hydrobiologia 551: 17-32. 10.1007/s10750-005-4447-0. CarrickH.2005An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study)Hydrobiologia551173210.1007/s10750-005-4447-0Open DOISearch in Google Scholar

Choi, J.W. & Stoecker, D.K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765. ChoiJ.W.StoeckerD.K.1989Effects of fixation on cell volume of marine planktonic protozoaAppl. Environ. Microbiol551761176510.1128/aem.55.7.1761-1765.198920294716347970Search in Google Scholar

Chróst, R.J., Adamczewski, T., Kalinowska, K. & Skowrońska, A. (2009). Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status. J. Microbiol. Biotechnol. 19: 858-868. 10.4014/jmb.0812.651. ChróstR.J.AdamczewskiT.KalinowskaK.SkowrońskaA.2009Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic statusJ. Microbiol. Biotechnol1985886810.4014/jmb.0812.651Open DOISearch in Google Scholar

Crawford, D.W. (1989). Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58: 161-174. CrawfordD.W.1989Mesodinium rubrum: the phytoplankter that wasn’tMar. Ecol. Prog. Ser5816117410.3354/meps058161Search in Google Scholar

Czychewicz, N. & Rychert, K. (2011). Seasonal changes in ciliate biomass and composition of the ciliate community in oligo-mesotrophic Lake Jasne (Iława Lake District, Poland). Limnol. Rev. 11: 3-5. 10.2478/v10194-011-0021-5. CzychewiczN.RychertK.2011Seasonal changes in ciliate biomass and composition of the ciliate community in oligo-mesotrophic Lake Jasne (Iława Lake District, Poland)Limnol. Rev113510.2478/v10194-011-0021-5Open DOISearch in Google Scholar

Davidson, K. (2014). The challenges of incorporating realistic simulations of marine protists in biogeochemically based mathematical models. Acta Protozool. 53: 129-138. 10.4467/16890027AP.14.012.1449. DavidsonK.2014The challenges of incorporating realistic simulations of marine protists in biogeochemically based mathematical modelsActa Protozool5312913810.4467/16890027AP.14.012.1449Open DOISearch in Google Scholar

Edler, L. (1979). Recommendations for methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Malmö: BMB Publication. EdlerL.1979Recommendations for methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyllMalmö: BMB PublicationSearch in Google Scholar

Ejsmont-Karabin, J. & Hutorowicz, A. (2011). Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. Stud. 40: 71-76. 10.2478/s13545-011-0043-2. Ejsmont-KarabinJ.HutorowiczA.2011Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. Stud40717610.2478/s13545-011-0043-2Open DOISearch in Google Scholar

Fenchel, T. (1974). Intrinsic rate of natural increase: the relation with body size. Oecologia (Berl.) 14: 317-326. FenchelT.1974Intrinsic rate of natural increase: the relation with body sizeOecologia (Berl.)1431732610.1007/BF0038457628308657Search in Google Scholar

Fenchel, T. (2005). Respiration in aquatic protists. In P.A. del Giorgio & P.J.le B. Williams (Eds.), Respiration in aquatic ecosystems (pp. 47-56). New York: Oxford University Press. FenchelT.2005Respiration in aquatic protistsdel GiorgioP.A.WilliamsP.J.leB.EdsRespiration in aquatic ecosystems4756New YorkOxford University Press10.1093/acprof:oso/9780198527084.003.0004Search in Google Scholar

Fenchel, T. (2014). Protozoa and oxygen. Acta Protozool. 53: 3-12. 10.4467/16890027AP.13.0020.1117. FenchelT.2014Protozoa and oxygenActa Protozool5331210.4467/16890027AP.13.0020.1117Open DOISearch in Google Scholar

Fenchel, T. & Finlay, B.J. (1990). Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol. Ecol. 74: 269-276. FenchelT.FinlayB.J.1990Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communitiesFEMS Microbiol. Ecol7426927610.1111/j.1574-6941.1990.tb01693.xSearch in Google Scholar

Fenchel, T. & Finlay, B.J. (1995). Ecology and evolution in anoxic worlds. New York: Oxford University Press. FenchelT.FinlayB.J.1995Ecology and evolution in anoxic worldsNew YorkOxford University Press10.1093/oso/9780198548386.001.0001Search in Google Scholar

Finlay, B.J. (1977). The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia (Berl.) 30: 75-81. FinlayB.J.1977The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoaOecologia (Berl.)30758110.1007/BF0034489328309192Search in Google Scholar

Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375-482. FoissnerW.BergerH.1996A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecologyFreshwater Biol3537548210.1111/j.1365-2427.1996.tb01775.xSearch in Google Scholar

Franzé, G. & Lavrentyev, P.J. (2014). Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 9(1): e86429. 10.1371/journal.pone.0086429. FranzéG.LavrentyevP.J.2014Microzooplankton growth rates examined across a temperature gradient in the Barents SeaPLoS ONE91e8642910.1371/journal.pone.0086429390170924475119Open DOISearch in Google Scholar

Franzé, G. & Modigh, M. (2013). Experimental evidence for internal predation in microzooplankton communities. Mar. Biol. 160: 3103-3112. 10.1007/s00227-013-2298-1. FranzéG.ModighM.2013Experimental evidence for internal predation in microzooplankton communitiesMar. Biol1603103311210.1007/s00227-013-2298-1Open DOISearch in Google Scholar

Gaedke, U. & Straile, D. (1994). Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagrams. Mar. Microb. Food Webs 8: 163-188. GaedkeU.StraileD.1994Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagramsMar. Microb. Food Webs8163188Search in Google Scholar

Garstecki, T., Verhoeven, R., Wickham, S.A. & Arndt, H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Freshw. Biol. 45: 147-167. 10.1046/j.1365-2427.2000.00676.x. GarsteckiT.VerhoevenR.WickhamS.A.ArndtH.2000Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern BalticFreshw. Biol4514716710.1046/j.1365-2427.2000.00676.xOpen DOISearch in Google Scholar

Gasol, J.M., Guerrero, R. & Pedrós-Alió, C. (1991). Seasonal variations in size structure and prokaryotic dominance in sulphurous Lake Cisó. Limnol. Oceanogr. 36: 860-872. GasolJ.M.GuerreroR.Pedrós-AlióC.1991Seasonal variations in size structure and prokaryotic dominance in sulphurous Lake CisóLimnol. Oceanogr3686087210.4319/lo.1991.36.5.0860Search in Google Scholar

Gifford, D.J. & Caron, D.A. (2000). Sampling, preservation, enumeration and biomass of marine protozooplankton. In R.P. Harris, P.H. Wiebe, J. Lenz, H.R. Skjoldal & M. Huntley (Eds.), ICES Zooplankton Methodology Manual (pp. 193-221). London: Academic Press. GiffordD.J.CaronD.A.2000Sampling, preservation, enumeration and biomass of marine protozooplanktonHarrisR.P.WiebeP.H.LenzJ.SkjoldalH.R.HuntleyM.EdsICES Zooplankton Methodology Manual193221LondonAcademic Press10.1016/B978-012327645-2/50006-2Search in Google Scholar

Hansen, B., Christiansen, S. & Pedersen, G. (1996). Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. Polar Biol. 16: 115-128. HansenB.ChristiansenS.PedersenG.1996Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chainPolar Biol1611512810.1007/BF02390432Search in Google Scholar

Hansen, P.J., Bjørnsen, P.K. & Hansen, B.W. (1997). Zooplankton grazing and growth: scaling within the 2–2,000-µm body size range. Limnol. Oceanogr. 42: 687-704. HansenP.J.BjørnsenP.K.HansenB.W.1997Zooplankton grazing and growth: scaling within the 2–2,000-µm body size rangeLimnol. Oceanogr4268770410.4319/lo.2000.45.8.1891Search in Google Scholar

Hasle, G.R. (1978). The inverted-microscope method. In A. Sournia (Ed.), Phytoplankton manual (pp. 88-96). Paris: UNESCO. HasleG.R.1978The inverted-microscope methodSourniaA.EdPhytoplankton manual8896ParisUNESCOSearch in Google Scholar

Jarosiewicz, A. (2009). Seasonal dynamics of biogens in lake Marszewo: trophy state and eutrophication resistance. Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN 6: 109-114. JarosiewiczA.2009Seasonal dynamics of biogens in lake Marszewo: trophy state and eutrophication resistanceTeka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN6109114Search in Google Scholar

Jarosiewicz, A. & Hetmański, T. (2009). Seasonal changes in nutrients concentration in lake Dobra (Pomeranian Lake District); trophic state of lake. Słupskie Pr. Biol. 6: 71-79. (In Polish with English abstract). JarosiewiczA.HetmańskiT.2009Seasonal changes in nutrients concentration in lake Dobra (Pomeranian Lake District); trophic state of lakeSłupskie Pr. Biol67179(In Polish with English abstract)Search in Google Scholar

Jerome, C.A., Montagnes, D.J.S. & Taylor, F.J.R. (1993). The effect of the quantitative protargol stain and Lugol’s and Bouin’s fixatives on cell size: a more accurate estimate of ciliate species biomass. J. Euk. Microbiol. 40: 254-259. JeromeC.A.MontagnesD.J.S.TaylorF.J.R.1993The effect of the quantitative protargol stain and Lugol’s and Bouin’s fixatives on cell size: a more accurate estimate of ciliate species biomassJ. Euk. Microbiol4025425910.1111/j.1550-7408.1993.tb04913.xSearch in Google Scholar

Johansson, M., Gorokhova, E. & Larsson, U. (2004). Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26: 67-80. 10.1093/plankt/fbg115. JohanssonM.GorokhovaE.LarssonU.2004Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea properJ. Plankton Res26678010.1093/plankt/fbg115Open DOISearch in Google Scholar

Jürgens, K., Skibbe, O. & Jeppesen, E. (1999). Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat. Microb. Ecol. 17: 61-75. JürgensK.SkibbeO.JeppesenE.1999Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lakeAquat. Microb. Ecol17617510.3354/ame017061Search in Google Scholar

Kalinowska, K. (2004). Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol. J. Ecol. 52: 19-34. KalinowskaK.2004Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic statusPol. J. Ecol521934Search in Google Scholar

Kerimoglu, O., Straile, D. & Peeters, F. (2014). Modeling the spring blooms of ciliates in a deep lake. Hydrobiologia 731: 173-189. 10.1007/s10750-013-1551-4. KerimogluO.StraileD.PeetersF.2014Modeling the spring blooms of ciliates in a deep lakeHydrobiologia73117318910.1007/s10750-013-1551-4Open DOISearch in Google Scholar

Kiss, Á.K., Ács, É., Kiss, K.T. & Török, J.K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121-138. 10.1016/j.ejop.2008.08.002. KissÁ.K.ÁcsÉ.KissK.T.TörökJ.K.2009Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary)Eur. J. Protistol4512113810.1016/j.ejop.2008.08.00219285382Open DOISearch in Google Scholar

Lavrentyev, P.J., McCarthy, M.J., Klarer, D.M., Jochem, F. & Gardner, W.S. (2004). Estuarine microbial food web patterns in a Lake Erie coastal wetland. Microb. Ecol. 48: 567-577. 10.1007/s00248-004-0250-0. LavrentyevP.J.McCarthyM.J.KlarerD.M.JochemF.GardnerW.S.2004Estuarine microbial food web patterns in a Lake Erie coastal wetlandMicrob. Ecol4856757710.1007/s00248-004-0250-015696390Open DOISearch in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83. LeakeyR.J.G.BurkillP.H.SleighM.A.1992Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flowMar. Biol114678310.1007/BF00350857Search in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994a). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16: 375-389. LeakeyR.J.G. BurkillP.H.SleighM.A.1994aA comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populationsJ. Plankton Res1637538910.1093/plankt/16.4.375Search in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994b). Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. UK 74: 849-861. LeakeyR.J.G.BurkillP.H.SleighM.A.1994bCiliate growth rates from Plymouth Sound: comparison of direct and indirect estimatesJ. Mar. Biol. Assoc. UK7484986110.1017/S0025315400090093Search in Google Scholar

Levinsen, H., Nielsen, T.G. & Hansen, B.W. (1999). Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol. 16: 217-232. LevinsenH.NielsenT.G.HansenB.W.1999Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliatesAquat. Microb. Ecol1621723210.3354/ame016217Search in Google Scholar

Lynn, D.H. & Montagnes, D.J.S. (1991). Global production of heterotrophic marine planktonic ciliates. In P.C. Reid, C.M. Turley & P.H. Burkill (Eds.), Protozoa and their role in marine processes, Vol. G25, NATO Publication (pp. 281-307). Berlin: Springer-Verlag. LynnD.H.MontagnesD.J.S.1991Global production of heterotrophic marine planktonic ciliatesReidP.C.TurleyC.M.BurkillP.H.EdsProtozoa and their role in marine processesVol. G25NATO Publication281307BerlinSpringer-Verlag10.1007/978-3-642-73181-5_18Search in Google Scholar

Lynn, D.H., Roff, J.C. & Hopcroft, R.R. (1991). Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, Jamaica. Mar. Biol. 110: 437-448. LynnD.H.RoffJ.C.HopcroftR.R.1991Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, JamaicaMar. Biol11043744810.1007/BF01344362Search in Google Scholar

Macek, M., Šimek, K., Pernthaler, J., Vyhnálek, V. & Psenner, R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18:463-481. MacekM.ŠimekK.PernthalerJ.VyhnálekV.PsennerR.1996Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degreeJ. Plankton Res1846348110.1093/plankt/18.4.463Search in Google Scholar

Marshall, S.M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117-127. MarshallS.M.1969Protozoa. Order: TintinnidaCons. Int. Explor. Mer. Zooplankton Sheets117127Search in Google Scholar

McManus, G.B. & Santoferrara, L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198-213). Chichester: Wiley-Blackwell. McManusG.B.SantoferraraL.F.2013Tintinnids in microzooplankton communitiesDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.EdsThe biology and ecology of tintinnid ciliates. Models for marine plankton198213ChichesterWiley-Blackwell10.1002/9781118358092.ch9Search in Google Scholar

Menden-Deuer, S. & Lessard, E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569-579. Menden-DeuerS.LessardE.J.2000Carbon to volume relationships for dinoflagellates, diatoms, and other protist planktonLimnol. Oceanogr4556957910.4319/lo.2000.45.3.0569Search in Google Scholar

Mieczan, T. (2003). Preliminary study on planktonic ciliates in slightly eutrophic Lake Uściwierz. Acta Agroph. 1: 479-484. MieczanT.2003Preliminary study on planktonic ciliates in slightly eutrophic Lake UściwierzActa Agroph1479484Search in Google Scholar

Mironova, E., Telesh, I. & Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208-220. 10.1093/plankt/fbr095. MironovaE.TeleshI.SkarlatoS.2012Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea)J. Plankton Res3420822010.1093/plankt/fbr095Open DOISearch in Google Scholar

Mitra, A., Castellani, C., Gentleman, W.C., Jónasdóttir, S.H., Flynn, K.J. et al. (2014). Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog. Oceanogr. 129: 176-199. 10.1016/j.pocean.2014.04.025. MitraA.CastellaniC.GentlemanW.C.JónasdóttirS.H.FlynnK.J.et al2014Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton linkProg. Oceanogr12917619910.1016/j.pocean.2014.04.025Open DOISearch in Google Scholar

Montagnes, D.J.S. (1996). Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254. MontagnesD.J.S.1996Growth responses of planktonic ciliates in the genera Strobilidium and StrombidiumMar. Ecol. Prog. Ser13024125410.3354/meps130241Search in Google Scholar

Montagnes, D.J.S. (2013). Ecophysiology and behavior of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 85-121). Chichester: Wiley-Blackwell. MontagnesD.J.S.2013Ecophysiology and behavior of tintinnidsDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.EdsThe biology and ecology of tintinnid ciliates. Models for marine plankton85121ChichesterWiley-Blackwell10.1002/9781118358092.ch4Search in Google Scholar

Montagnes, D.J.S., Berges, J.A., Harrison, P.J. & Taylor, F.J.R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060. MontagnesD.J.S.BergesJ.A.HarrisonP.J.TaylorF.J.R.1994Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplanktonLimnol. Oceanogr391044106010.4319/lo.1994.39.5.1044Search in Google Scholar

Montagnes, D.J.S., Dower, J.F. & Figueiredo, G.M. (2010). The protozooplankton–ichthyoplankton trophic link: an overlooked aspect of aquatic food webs. J. Eukaryot. Microbiol. 57: 223-228. 10.1111/j.1550-7408.2010.00476.x. MontagnesD.J.S. DowerJ.F.FigueiredoG.M.2010The protozooplankton–ichthyoplankton trophic link: an overlooked aspect of aquatic food websJ. Eukaryot. Microbiol5722322810.1111/j.1550-7408.2010.00476.x20384906Open DOISearch in Google Scholar

Montagnes, D.J.S., Kimmance, S.A. & Atkinson, D. (2003). Using Q10: can growth rates increase linearly with temperature? Aquat. Microb. Ecol. 32: 307-313. MontagnesD.J.S. KimmanceS.A.AtkinsonD.2003Using Q10: can growth rates increase linearly with temperature?Aquat. Microb. Ecol3230731310.3354/ame032307Search in Google Scholar

Montagnes, D.J.S. & Lessard, E.J. (1999). Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat. Microb. Ecol. 20: 167-181. MontagnesD.J.S.LessardE.J.1999Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton bloomsAquat. Microb. Ecol2016718110.3354/ame020167Search in Google Scholar

Montagnes, D.J.S., Lynn, D.H., Roff, J.C. & Taylor, W.D. (1988). The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30. MontagnesD.J.S. LynnD.H.RoffJ.C.TaylorW.D.1988The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic roleMar. Biol99213010.1007/BF00644973Search in Google Scholar

Montagnes, D.J.S., Morgan, G., Bissinger, J.E., Atkinson, D. & Weisse, T. (2008). Short-term temperature change may impact freshwater carbon flux: a microbial perspective. Glob. Chang. Biol. 14: 2823-2838. 10.1111/j.1365-2486.2008.01700.x. MontagnesD.J.S. MorganG.BissingerJ.E.AtkinsonD.WeisseT.2008Short-term temperature change may impact freshwater carbon flux: a microbial perspectiveGlob. Chang. Biol142823283810.1111/j.1365-2486.2008.01700.xOpen DOISearch in Google Scholar

Mooij, W.M., Trolle, D., Jeppesen, E., Arhonditis, G., Belolipetsky, P.V. et al. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat. Ecol. 44: 633-667. 10.1007/s10452-010-9339-3. MooijW.M.TrolleD.JeppesenE.ArhonditisG.BelolipetskyP.V.et al2010Challenges and opportunities for integrating lake ecosystem modelling approachesAquat. Ecol4463366710.1007/s10452-010-9339-3Open DOISearch in Google Scholar

Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: 261-273. MüllerH.1989The relative importance of different ciliate taxa in the pelagic food web of Lake ConstanceMicrob. Ecol1826127310.1007/BF0207581324196206Search in Google Scholar

Müller, H. & Geller, W. (1993). Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327. MüllerH.GellerW.1993Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsideredArch. Hydrobiol12631532710.1127/archiv-hydrobiol/126/1993/315Search in Google Scholar

Müller, H., Schöne, A., Pinto-Coelho, R.M., Schweizer, A. & Weisse, T. (1991). Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119-138. MüllerH.SchöneA.Pinto-CoelhoR.M.SchweizerA.WeisseT.1991Seasonal succession of ciliates in Lake ConstanceMicrob. Ecol2111913810.1007/BF0253914824194205Search in Google Scholar

Müller, H. & Weisse, T. (1994). Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J. Plankton Res. 16: 391-401. MüllerH.WeisseT.1994Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRGJ. Plankton Res1639140110.1093/plankt/16.4.391Search in Google Scholar

Nielsen, T.G. & Kiørboe, T. (1994). Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519. NielsenT.G.KiørboeT.1994Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. CiliatesLimnol. Oceanogr3950851910.4319/lo.1994.39.3.0508Search in Google Scholar

Ohman, M.D. & Snyder, R.A. (1991). Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935. OhmanM.D.SnyderR.A.1991Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr3692293510.4319/lo.1991.36.5.0922Search in Google Scholar

Packroff, G. (2000). Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433: 157-166. PackroffG.2000Protozooplankton in acidic mining lakes with special respect to ciliatesHydrobiologia43315716610.1023/A:1004095426532Search in Google Scholar

Patterson, D.J. & Hedley, S. (2003). Free-living freshwater protozoa – a colour guide. Washington: Manson Publishing. PattersonD.J.HedleyS.2003Free-living freshwater protozoa – a colour guideWashingtonManson Publishing10.1128/9781555812751Search in Google Scholar

Pettigrosso, R.E. & Popovich, C.A. (2009). Phytoplankton-aloricate ciliate community in the Bahía Blanca Estuary (Argentina): seasonal patterns and trophic groups. Braz. J. Oceanogr. 57: 215-227. PettigrossoR.E.PopovichC.A.2009Phytoplankton-aloricate ciliate community in the Bahía Blanca Estuary (Argentina): seasonal patterns and trophic groupsBraz. J. Oceanogr5721522710.1590/S1679-87592009000300005Search in Google Scholar

Pérez, M.T., Dolan, J.R. & Fukai, E. (1997). Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar. Ecol. Prog. Ser. 155: 89-101. PérezM.T.DolanJ.R.FukaiE.1997Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepodsMar. Ecol. Prog. Ser1558910110.3354/meps155089Search in Google Scholar

Pfister, G., Auer, B. & Arndt, H. (2002a). Community analysis of pelagic ciliates in numerous different freshwater and brackish water habitats. Verh. Int. Verein. Theor. Angew. Limnol. 27: 3404-3408. PfisterG.AuerB.ArndtH.2002aCommunity analysis of pelagic ciliates in numerous different freshwater and brackish water habitatsVerh. Int. Verein. Theor. Angew. Limnol273404340810.1080/03680770.1998.11902459Search in Google Scholar

Pfister, G., Auer, B. & Arndt, H. (2002b). Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes – a community analysis at the species level. Limnologica 32: 147-168. PfisterG.AuerB.ArndtH.2002bLimnologica3214716810.1016/S0075-9511(02)80005-6Search in Google Scholar

Putland, J.N. & Iverson, R.L. (2007). Microzooplankton: major herbivores in an estuarine planktonic food web. Mar. Ecol. Prog. Ser. 345: 63-73. 10.3354/meps06841. PutlandJ.N.IversonR.L.2007Microzooplankton: major herbivores in an estuarine planktonic food webMar. Ecol. Prog. Ser345637310.3354/meps06841Open DOISearch in Google Scholar

Reiss, J. & Schmid-Araya, J.M. (2010). Life history allometries and production of small fauna. Ecology 91: 497-507. ReissJ.Schmid-ArayaJ.M.2010Life history allometries and production of small faunaEcology9149750710.1890/08-1248.120392014Search in Google Scholar

Rose, J.M. & Caron, D.A. (2007). Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52: 886-895. RoseJ.M.CaronD.A.2007Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold watersLimnol. Oceanogr5288689510.4319/lo.2007.52.2.0886Search in Google Scholar

Rychert, K. (2009). Planktonic ciliates in the coastal medium-size river: diversity and productivity. Pol. J. Ecol. 57: 503-512. RychertK.2009Planktonic ciliates in the coastal medium-size river: diversity and productivityPol. J. Ecol57503512Search in Google Scholar

Rychert, K., Wielgat-Rychert, M., Szczurowska, D., Myszka, M., Bochyńska, M. et al. (2012). The importance of ciliates as a trophic link in shallow, brackish, and eutrophic lakes. Pol. J. Ecol. 60: 767-776. RychertK.Wielgat-RychertM.SzczurowskaD.MyszkaM.BochyńskaM.et al2012The importance of ciliates as a trophic link in shallow, brackish, and eutrophic lakesPol. J. Ecol60767776Search in Google Scholar

Rychert, K. (2013). A modified dilution method reveals higher protozoan growth rates than the size fractionation method. Eur. J. Protistol. 49: 249-254. 10.1016/j.ejop.2012.08.003. RychertK.2013A modified dilution method reveals higher protozoan growth rates than the size fractionation methodEur. J. Protistol4924925410.1016/j.ejop.2012.08.00322999054Open DOISearch in Google Scholar

Rychert, K., Spich, K., Laskus, K., Pączkowska, M., Wielgat-Rychert, M. et al. (2013). Composition of protozoan communities at two stations in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268-276. 10.2478/s13545-013-0083-x. RychertK.SpichK.LaskusK.PączkowskaM.Wielgat-RychertM.et al2013Composition of protozoan communities at two stations in the coastal zone of the southern Baltic SeaOceanol. Hydrobiol. Stud4226827610.2478/s13545-013-0083-xOpen DOISearch in Google Scholar

Sandberg, J. (2007). Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic Sea. Ecol. Model. 201: 243-261. 10.1016/j.ecolmodel.2006.09.023. SandbergJ.2007Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic SeaEcol. Model20124326110.1016/j.ecolmodel.2006.09.023Open DOISearch in Google Scholar

Sanders, R.W. & Wickham, S.A. (1993). Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7: 197-223. SandersR.W.WickhamS.A.1993Planktonic protozoa and metazoa: predation, food quality and population controlMar. Microb. Food Webs7197223Search in Google Scholar

Seuthe, L., Iversen, K.R. & Narcy, F. (2011). Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34: 751-766. 10.1007/s00300-010-0930-9. SeutheL.IversenK.R.NarcyF.2011Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellatesPolar Biol3475176610.1007/s00300-010-0930-9Open DOISearch in Google Scholar

Sherr, E.B. & Sherr, B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293-308. SherrE.B.SherrB.F.2002Significance of predation by protists in aquatic microbial food websAntonie Leeuwenhoek8129330810.1023/A:1020591307260Search in Google Scholar

Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1-11. SmetacekV.1981The annual cycle of protozooplankton in the Kiel BightMar. Biol6311110.1007/BF00394657Search in Google Scholar

Sonntag, B., Posch, T., Klammer, S., Teubner, K. & Psenner, R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43: 193-207. SonntagB.PoschT.KlammerS.TeubnerK.PsennerR.2006Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depthsAquat. Microb. Ecol4319320710.3354/ame043193Search in Google Scholar

Stoecker, D.K. (2013). Predators of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 122-144). Chichester: Wiley-Blackwell. StoeckerD.K.2013Predators of tintinnidsDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.EdsThe biology and ecology of tintinnid ciliates. Models for marine plankton122144ChichesterWiley-Blackwell10.1002/9781118358092.ch5Search in Google Scholar

Stoecker, D.K. & Capuzzo J.M. (1990). Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891–908. StoeckerD.K. CapuzzoJ.M.1990Predation on protozoa: its importance to zooplanktonJ. Plankton Res1289190810.1093/plankt/12.5.891Search in Google Scholar

Stoecker, D.K., Johnson, M., de Vargas, C. & Not, F. (2009). Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57: 279-310. 10.3354/ame01340. StoeckerD.K.JohnsonM.de VargasC.NotF.2009Acquired phototrophy in aquatic protistsAquat. Microb. Ecol5727931010.3354/ame01340Open DOISearch in Google Scholar

Stoecker, D.K., Sieracki, M.E., Verity, P.G., Michaels, A.E., Haugen, E. et al. (1994). Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990. J. Mar. Biol. Ass. UK 74: 427-443. StoeckerD.K.SierackiM.E.VerityP.G.MichaelsA.E.HaugenE.et al1994Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990J. Mar. Biol. Ass. UK7442744310.1017/S0025315400039448Search in Google Scholar

Stoecker, D.K., Taniguchi, A. & Michaels, A.E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241-254. StoeckerD.K.TaniguchiA.MichaelsA.E.1989Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope watersMar. Ecol. Prog. Ser5024125410.3354/meps050241Search in Google Scholar

Stukel, M.R. & Landry, M.R. (2010). Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse models. Limnol. Oceanogr. 55: 2669-2685. 10.4319/lo.2010.55.6.2669. StukelM.R.LandryM.R.2010Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse modelsLimnol. Oceanogr552669268510.4319/lo.2010.55.6.2669Open DOISearch in Google Scholar

Tanaka, T., Rassoulzadegan, F. & Thingstad, T.F. (2004). Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoa. Biogeosciences Discuss. 1: 413-428. TanakaT.RassoulzadeganF.ThingstadT.F.2004Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoaBiogeosciences Discuss141342810.5194/bgd-1-413-2004Search in Google Scholar

Taylor, W.D. & Johannsson, O.E. (1991). A comparison of estimates of productivity and consumption by zooplankton for ciliates in Lake Ontario. J. Plankton Res. 13: 363-372. TaylorW.D.JohannssonO.E.1991A comparison of estimates of productivity and consumption by zooplankton for ciliates in Lake OntarioJ. Plankton Res1336337210.1093/plankt/13.2.363Search in Google Scholar

Tett, P. & Wilson, H. (2000). From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25: 431-446. TettP.WilsonH.2000From biogeochemical to ecological models of marine microplanktonJ. Mar. Syst2543144610.1016/S0924-7963(00)00032-4Search in Google Scholar

Tirok, K. & Gaedkem, U. (2007). Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat. Microb. Ecol. 49: 87-100. 10.3354/ame01127. TirokK.GaedkemU.2007Regulation of planktonic ciliate dynamics and functional composition during spring in Lake ConstanceAquat. Microb. Ecol498710010.3354/ame01127Open DOISearch in Google Scholar

Urrutxurtu, I., Orive, E. & de la Sota, A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Est. Coast. Shelf Sci. 57: 1169-1182. 10.1016/S0272-7714(03)00057-X. UrrutxurtuI.OriveE.de la SotaA.2003Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay)Est. Coast. Shelf Sci571169118210.1016/S0272-7714(03)00057-XOpen DOISearch in Google Scholar

Verity, P.G. (1986). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126. VerityP.G.1986Growth rates of natural tintinnid populations in Narragansett BayMar. Ecol. Prog. Ser2911712610.3354/meps029117Search in Google Scholar

Verity, P.G. & Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859-868. VerityP.G.LangdonC.1984Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett BayJ. Plankton Res685986810.1093/plankt/6.5.859Search in Google Scholar

Wallberg, P., Jonsson, P.R. & Johnstone, R. (1999). Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18: 175-185. WallbergP.JonssonP.R.JohnstoneR.1999Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystemAquat. Microb. Ecol1817518510.3354/ame018175Search in Google Scholar

Weisse, T. & Müller, H. (1998). Planktonic protozoa and the microbial food web in Lake Constance. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 53: 223-254. WeisseT.MüllerH.1998Planktonic protozoa and the microbial food web in Lake ConstanceArch. Hydrobiol. Spec. Issues Adv. Limnol53223254Search in Google Scholar

Weisse, T. & Stadler, P. (2006). Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708-1715. WeisseT.StadlerP.2006Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distributionLimnol. Oceanogr511708171510.4319/lo.2006.51.4.1708Search in Google Scholar

Weisse, T., Kirstens, N., Meyer, V.C.L., Janke, L., Lettner, S. et al. (2001). Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167-179. WeisseT.KirstensN.MeyerV.C.L.JankeL.LettnerS.et al2001Niche separation in common prostome freshwater ciliates: the effect of food and temperatureAquat. Microb. Ecol2616717910.3354/ame026167Search in Google Scholar

Weisse, T., Stadler, P., Lindström, E.S., Kimmance, S.A. & Montagnes, D.J.S. (2002). Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 47: 1447-1455. WeisseT.StadlerP.LindströmE.S.KimmanceS.A.MontagnesD.J.S.2002Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta Limnol. Oceanogr471447145510.4319/lo.2002.47.5.1447Search in Google Scholar

Weitere, M., Scherwass, A., Sieben, K.-T. & Arndt, H. (2005). Planktonic food web structure and potential carbon flow in the lower River Rhine with the focus on the role of protozoans. River Res. Applic. 21: 535-549. 10.1002/rra.825. WeitereM.ScherwassA.SiebenK.-T.ArndtH.2005Planktonic food web structure and potential carbon flow in the lower River Rhine with the focus on the role of protozoansRiver Res. Applic2153554910.1002/rra.825Open DOISearch in Google Scholar

Wiackowski, K., Brett, M.T. & Goldman, Ch.R. (1994a). Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39: 486–492. WiackowskiK.BrettM.T.GoldmanCh.R.1994aDifferential effects of zooplankton species on ciliate community structureLimnol. Oceanogr3948649210.4319/lo.1994.39.3.0486Search in Google Scholar

Wiackowski, K., Doniec, A. & Fyda, J. (1994b). An empirical study of the effect of fixation on ciliate cell volume. Mar. Microb. Food Webs 8: 59-69. WiackowskiK.DoniecA.FydaJ.1994bAn empirical study of the effect of fixation on ciliate cell volumeMar. Microb. Food Webs85969Search in Google Scholar

Wiackowski, K., Ventelä, A.-M., Moilanen, M., Saarikari, V., Vuorio, K. et al. (2001). What factors control planktonic ciliates during summer in a highly eutrophic lake? Hydrobiologia 443: 43-57. WiackowskiK.VenteläA.-M.MoilanenM.SaarikariV.VuorioK.et al2001What factors control planktonic ciliates during summer in a highly eutrophic lake?Hydrobiologia443435710.1023/A:1017592019513Search in Google Scholar

Witek, M. (1998). Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83: 163-182. WitekM.1998Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, Southern BalticInternat. Rev. Hydrobiol8316318210.1002/iroh.19980830207Search in Google Scholar

Witek, Z. & Jarosiewicz, A. (2010). The oxygen budget of two closed, dimictic lakes in the vicinity of Bytów (West Pomeranian Lake District, northern Poland). Oceanol. Hydrobiol. Stud. 39: 135-145. 10.2478/v10009-010-0022-8. WitekZ.JarosiewiczA.2010The oxygen budget of two closed, dimictic lakes in the vicinity of Bytów (West Pomeranian Lake District, northern Poland)Oceanol. Hydrobiol. Stud3913514510.2478/v10009-010-0022-8Open DOISearch in Google Scholar

Xu, R.L. & Cronberg, G. (2010). Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community structure, seasonal dynamics and long-term changes. Protistology 6: 173-187. XuR.L.CronbergG.2010Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community structure, seasonal dynamics and long-term changesProtistology6173187Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chimica, Chimica, altro, Geoscienze, Geoscienze, altro, Scienze biologiche, Scienze della vita, altro