INFORMAZIONI SU QUESTO ARTICOLO

Cita

Aberle, N., Lengfellner, K. & Sommer, U. (2007). Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150: 668-681. 10.1007/s00442-006-0540-y. AberleN.LengfellnerK.SommerU.2007Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warmingOecologia15066868110.1007/s00442-006-0540-yOpen DOISearch in Google Scholar

Azam, F., Fenchel, T., Field, J.D., Gray, J.S., Meyer-Reil, L.A. et al. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263. AzamF.FenchelT.FieldJ.D.GrayJ.S.Meyer-ReilL.A.et al1983The ecological role of water-column microbes in the seaMar. Ecol. Prog. Ser1025726310.3354/meps010257Search in Google Scholar

Baretta-Bekker, J.G., Baretta, J.W. & Rasmussen, E.K. (1995). The microbial food web in the European Regional Seas Ecosystem Model. Neth. J. Sea Res. 33: 363-379. Baretta-BekkerJ.G.BarettaJ.W.RasmussenE.K.1995The microbial food web in the European Regional Seas Ecosystem ModelNeth. J. Sea Res3336337910.1016/0077-7579(95)90053-5Search in Google Scholar

Beaver, J.R. & Crisman, T.L. (1982). The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253. BeaverJ.R.CrismanT.L.1982The trophic response of ciliated protozoans in freshwater lakesLimnol. Oceanogr2724625310.4319/lo.1982.27.2.0246Search in Google Scholar

Buitenhuis, E.T., Rivkin, R.B., Sailley, S. & Le Quéré, C. (2010). Biogeochemical fluxes through microzooplankton. Global Biogeochem. Cy. 24, GB4015. 10.1029/2009GB003601. BuitenhuisE.T.RivkinR.B.SailleyS.Le QuéréC.2010Biogeochemical fluxes through microzooplanktonGlobal Biogeochem. Cy24GB401510.1029/2009GB003601Open DOISearch in Google Scholar

Calbet, A. (2008). The trophic roles of microzooplankton in marine systems. J. Plankton Res. 65: 325-331. CalbetA.2008The trophic roles of microzooplankton in marine systemsJ. Plankton Res6532533110.1093/icesjms/fsn013Search in Google Scholar

Calbet, A. & Landry, M.R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49: 51-57. CalbetA.LandryM.R.2004Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systemsLimnol. Oceanogr49515710.4319/lo.2004.49.1.0051Search in Google Scholar

Calbet, A. & Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38: 157-167. 10.3354/ame038157. CalbetA.SaizE.2005The ciliate-copepod link in marine ecosystemsAquat. Microb. Ecol3815716710.3354/ame038157Open DOISearch in Google Scholar

Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. (2001). Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174. CarriasJ.-F.ThouvenotA.AmblardC.Sime-NgandoT.2001Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, FranceAquat. Microb. Ecol2416317410.3354/ame024163Search in Google Scholar

Carrick, H.J., Fahnenstiel, G.L. & Taylor, W.D. (1992). Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vivo comparison and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235. CarrickH.J.FahnenstielG.L.TaylorW.D.1992Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vivo comparison and importance to food web dynamicsLimnol. Oceanogr371221123510.4319/lo.1992.37.6.1221Search in Google Scholar

Carrick, H. (2005). An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study). Hydrobiologia 551: 17-32. 10.1007/s10750-005-4447-0. CarrickH.2005An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study)Hydrobiologia551173210.1007/s10750-005-4447-0Open DOISearch in Google Scholar

Choi, J.W. & Stoecker, D.K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765. ChoiJ.W.StoeckerD.K.1989Effects of fixation on cell volume of marine planktonic protozoaAppl. Environ. Microbiol551761176510.1128/aem.55.7.1761-1765.198920294716347970Search in Google Scholar

Chróst, R.J., Adamczewski, T., Kalinowska, K. & Skowrońska, A. (2009). Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status. J. Microbiol. Biotechnol. 19: 858-868. 10.4014/jmb.0812.651. ChróstR.J.AdamczewskiT.KalinowskaK.SkowrońskaA.2009Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic statusJ. Microbiol. Biotechnol1985886810.4014/jmb.0812.651Open DOISearch in Google Scholar

Crawford, D.W. (1989). Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58: 161-174. CrawfordD.W.1989Mesodinium rubrum: the phytoplankter that wasn’tMar. Ecol. Prog. Ser5816117410.3354/meps058161Search in Google Scholar

Czychewicz, N. & Rychert, K. (2011). Seasonal changes in ciliate biomass and composition of the ciliate community in oligo-mesotrophic Lake Jasne (Iława Lake District, Poland). Limnol. Rev. 11: 3-5. 10.2478/v10194-011-0021-5. CzychewiczN.RychertK.2011Seasonal changes in ciliate biomass and composition of the ciliate community in oligo-mesotrophic Lake Jasne (Iława Lake District, Poland)Limnol. Rev113510.2478/v10194-011-0021-5Open DOISearch in Google Scholar

Davidson, K. (2014). The challenges of incorporating realistic simulations of marine protists in biogeochemically based mathematical models. Acta Protozool. 53: 129-138. 10.4467/16890027AP.14.012.1449. DavidsonK.2014The challenges of incorporating realistic simulations of marine protists in biogeochemically based mathematical modelsActa Protozool5312913810.4467/16890027AP.14.012.1449Open DOISearch in Google Scholar

Edler, L. (1979). Recommendations for methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Malmö: BMB Publication. EdlerL.1979Recommendations for methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyllMalmö: BMB PublicationSearch in Google Scholar

Ejsmont-Karabin, J. & Hutorowicz, A. (2011). Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. Stud. 40: 71-76. 10.2478/s13545-011-0043-2. Ejsmont-KarabinJ.HutorowiczA.2011Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. Stud40717610.2478/s13545-011-0043-2Open DOISearch in Google Scholar

Fenchel, T. (1974). Intrinsic rate of natural increase: the relation with body size. Oecologia (Berl.) 14: 317-326. FenchelT.1974Intrinsic rate of natural increase: the relation with body sizeOecologia (Berl.)1431732610.1007/BF0038457628308657Search in Google Scholar

Fenchel, T. (2005). Respiration in aquatic protists. In P.A. del Giorgio & P.J.le B. Williams (Eds.), Respiration in aquatic ecosystems (pp. 47-56). New York: Oxford University Press. FenchelT.2005Respiration in aquatic protistsdel GiorgioP.A.WilliamsP.J.leB.EdsRespiration in aquatic ecosystems4756New YorkOxford University Press10.1093/acprof:oso/9780198527084.003.0004Search in Google Scholar

Fenchel, T. (2014). Protozoa and oxygen. Acta Protozool. 53: 3-12. 10.4467/16890027AP.13.0020.1117. FenchelT.2014Protozoa and oxygenActa Protozool5331210.4467/16890027AP.13.0020.1117Open DOISearch in Google Scholar

Fenchel, T. & Finlay, B.J. (1990). Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol. Ecol. 74: 269-276. FenchelT.FinlayB.J.1990Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communitiesFEMS Microbiol. Ecol7426927610.1111/j.1574-6941.1990.tb01693.xSearch in Google Scholar

Fenchel, T. & Finlay, B.J. (1995). Ecology and evolution in anoxic worlds. New York: Oxford University Press. FenchelT.FinlayB.J.1995Ecology and evolution in anoxic worldsNew YorkOxford University PressSearch in Google Scholar

Finlay, B.J. (1977). The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia (Berl.) 30: 75-81. FinlayB.J.1977The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoaOecologia (Berl.)30758110.1007/BF0034489328309192Search in Google Scholar

Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375-482. FoissnerW.BergerH.1996A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecologyFreshwater Biol3537548210.1111/j.1365-2427.1996.tb01775.xSearch in Google Scholar

Franzé, G. & Lavrentyev, P.J. (2014). Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 9(1): e86429. 10.1371/journal.pone.0086429. FranzéG.LavrentyevP.J.2014Microzooplankton growth rates examined across a temperature gradient in the Barents SeaPLoS ONE91e8642910.1371/journal.pone.0086429390170924475119Open DOISearch in Google Scholar

Franzé, G. & Modigh, M. (2013). Experimental evidence for internal predation in microzooplankton communities. Mar. Biol. 160: 3103-3112. 10.1007/s00227-013-2298-1. FranzéG.ModighM.2013Experimental evidence for internal predation in microzooplankton communitiesMar. Biol1603103311210.1007/s00227-013-2298-1Open DOISearch in Google Scholar

Gaedke, U. & Straile, D. (1994). Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagrams. Mar. Microb. Food Webs 8: 163-188. GaedkeU.StraileD.1994Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagramsMar. Microb. Food Webs8163188Search in Google Scholar

Garstecki, T., Verhoeven, R., Wickham, S.A. & Arndt, H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Freshw. Biol. 45: 147-167. 10.1046/j.1365-2427.2000.00676.x. GarsteckiT.VerhoevenR.WickhamS.A.ArndtH.2000Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern BalticFreshw. Biol4514716710.1046/j.1365-2427.2000.00676.xOpen DOISearch in Google Scholar

Gasol, J.M., Guerrero, R. & Pedrós-Alió, C. (1991). Seasonal variations in size structure and prokaryotic dominance in sulphurous Lake Cisó. Limnol. Oceanogr. 36: 860-872. GasolJ.M.GuerreroR.Pedrós-AlióC.1991Seasonal variations in size structure and prokaryotic dominance in sulphurous Lake CisóLimnol. Oceanogr3686087210.4319/lo.1991.36.5.0860Search in Google Scholar

Gifford, D.J. & Caron, D.A. (2000). Sampling, preservation, enumeration and biomass of marine protozooplankton. In R.P. Harris, P.H. Wiebe, J. Lenz, H.R. Skjoldal & M. Huntley (Eds.), ICES Zooplankton Methodology Manual (pp. 193-221). London: Academic Press. GiffordD.J.CaronD.A.2000Sampling, preservation, enumeration and biomass of marine protozooplanktonHarrisR.P.WiebeP.H.LenzJ.SkjoldalH.R.HuntleyM.EdsICES Zooplankton Methodology Manual193221LondonAcademic Press10.1016/B978-012327645-2/50006-2Search in Google Scholar

Hansen, B., Christiansen, S. & Pedersen, G. (1996). Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. Polar Biol. 16: 115-128. HansenB.ChristiansenS.PedersenG.1996Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chainPolar Biol1611512810.1007/BF02390432Search in Google Scholar

Hansen, P.J., Bjørnsen, P.K. & Hansen, B.W. (1997). Zooplankton grazing and growth: scaling within the 2–2,000-µm body size range. Limnol. Oceanogr. 42: 687-704. HansenP.J.BjørnsenP.K.HansenB.W.1997Zooplankton grazing and growth: scaling within the 2–2,000-µm body size rangeLimnol. Oceanogr4268770410.4319/lo.2000.45.8.1891Search in Google Scholar

Hasle, G.R. (1978). The inverted-microscope method. In A. Sournia (Ed.), Phytoplankton manual (pp. 88-96). Paris: UNESCO. HasleG.R.1978The inverted-microscope methodSourniaA.EdPhytoplankton manual8896ParisUNESCOSearch in Google Scholar

Jarosiewicz, A. (2009). Seasonal dynamics of biogens in lake Marszewo: trophy state and eutrophication resistance. Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN 6: 109-114. JarosiewiczA.2009Seasonal dynamics of biogens in lake Marszewo: trophy state and eutrophication resistanceTeka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN6109114Search in Google Scholar

Jarosiewicz, A. & Hetmański, T. (2009). Seasonal changes in nutrients concentration in lake Dobra (Pomeranian Lake District); trophic state of lake. Słupskie Pr. Biol. 6: 71-79. (In Polish with English abstract). JarosiewiczA.HetmańskiT.2009Seasonal changes in nutrients concentration in lake Dobra (Pomeranian Lake District); trophic state of lakeSłupskie Pr. Biol67179(In Polish with English abstract)Search in Google Scholar

Jerome, C.A., Montagnes, D.J.S. & Taylor, F.J.R. (1993). The effect of the quantitative protargol stain and Lugol’s and Bouin’s fixatives on cell size: a more accurate estimate of ciliate species biomass. J. Euk. Microbiol. 40: 254-259. JeromeC.A.MontagnesD.J.S.TaylorF.J.R.1993The effect of the quantitative protargol stain and Lugol’s and Bouin’s fixatives on cell size: a more accurate estimate of ciliate species biomassJ. Euk. Microbiol4025425910.1111/j.1550-7408.1993.tb04913.xSearch in Google Scholar

Johansson, M., Gorokhova, E. & Larsson, U. (2004). Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26: 67-80. 10.1093/plankt/fbg115. JohanssonM.GorokhovaE.LarssonU.2004Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea properJ. Plankton Res26678010.1093/plankt/fbg115Open DOISearch in Google Scholar

Jürgens, K., Skibbe, O. & Jeppesen, E. (1999). Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat. Microb. Ecol. 17: 61-75. JürgensK.SkibbeO.JeppesenE.1999Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lakeAquat. Microb. Ecol17617510.3354/ame017061Search in Google Scholar

Kalinowska, K. (2004). Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol. J. Ecol. 52: 19-34. KalinowskaK.2004Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic statusPol. J. Ecol521934Search in Google Scholar

Kerimoglu, O., Straile, D. & Peeters, F. (2014). Modeling the spring blooms of ciliates in a deep lake. Hydrobiologia 731: 173-189. 10.1007/s10750-013-1551-4. KerimogluO.StraileD.PeetersF.2014Modeling the spring blooms of ciliates in a deep lakeHydrobiologia73117318910.1007/s10750-013-1551-4Open DOISearch in Google Scholar

Kiss, Á.K., Ács, É., Kiss, K.T. & Török, J.K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121-138. 10.1016/j.ejop.2008.08.002. KissÁ.K.ÁcsÉ.KissK.T.TörökJ.K.2009Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary)Eur. J. Protistol4512113810.1016/j.ejop.2008.08.00219285382Open DOISearch in Google Scholar

Lavrentyev, P.J., McCarthy, M.J., Klarer, D.M., Jochem, F. & Gardner, W.S. (2004). Estuarine microbial food web patterns in a Lake Erie coastal wetland. Microb. Ecol. 48: 567-577. 10.1007/s00248-004-0250-0. LavrentyevP.J.McCarthyM.J.KlarerD.M.JochemF.GardnerW.S.2004Estuarine microbial food web patterns in a Lake Erie coastal wetlandMicrob. Ecol4856757710.1007/s00248-004-0250-015696390Open DOISearch in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83. LeakeyR.J.G.BurkillP.H.SleighM.A.1992Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flowMar. Biol114678310.1007/BF00350857Search in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994a). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16: 375-389. LeakeyR.J.G. BurkillP.H.SleighM.A.1994aA comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populationsJ. Plankton Res1637538910.1093/plankt/16.4.375Search in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994b). Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. UK 74: 849-861. LeakeyR.J.G.BurkillP.H.SleighM.A.1994bCiliate growth rates from Plymouth Sound: comparison of direct and indirect estimatesJ. Mar. Biol. Assoc. UK7484986110.1017/S0025315400090093Search in Google Scholar

Levinsen, H., Nielsen, T.G. & Hansen, B.W. (1999). Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol. 16: 217-232. LevinsenH.NielsenT.G.HansenB.W.1999Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliatesAquat. Microb. Ecol1621723210.3354/ame016217Search in Google Scholar

Lynn, D.H. & Montagnes, D.J.S. (1991). Global production of heterotrophic marine planktonic ciliates. In P.C. Reid, C.M. Turley & P.H. Burkill (Eds.), Protozoa and their role in marine processes, Vol. G25, NATO Publication (pp. 281-307). Berlin: Springer-Verlag. LynnD.H.MontagnesD.J.S.1991Global production of heterotrophic marine planktonic ciliatesReidP.C.TurleyC.M.BurkillP.H.EdsProtozoa and their role in marine processesVol. G25NATO Publication281307BerlinSpringer-Verlag10.1007/978-3-642-73181-5_18Search in Google Scholar

Lynn, D.H., Roff, J.C. & Hopcroft, R.R. (1991). Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, Jamaica. Mar. Biol. 110: 437-448. LynnD.H.RoffJ.C.HopcroftR.R.1991Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, JamaicaMar. Biol11043744810.1007/BF01344362Search in Google Scholar

Macek, M., Šimek, K., Pernthaler, J., Vyhnálek, V. & Psenner, R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18:463-481. MacekM.ŠimekK.PernthalerJ.VyhnálekV.PsennerR.1996Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degreeJ. Plankton Res1846348110.1093/plankt/18.4.463Search in Google Scholar

Marshall, S.M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117-127. MarshallS.M.1969Protozoa. Order: TintinnidaCons. Int. Explor. Mer. Zooplankton Sheets117127Search in Google Scholar

McManus, G.B. & Santoferrara, L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198-213). Chichester: Wiley-Blackwell. McManusG.B.SantoferraraL.F.2013Tintinnids in microzooplankton communitiesDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.EdsThe biology and ecology of tintinnid ciliates. Models for marine plankton198213ChichesterWiley-Blackwell10.1002/9781118358092.ch9Search in Google Scholar

Menden-Deuer, S. & Lessard, E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569-579. Menden-DeuerS.LessardE.J.2000Carbon to volume relationships for dinoflagellates, diatoms, and other protist planktonLimnol. Oceanogr4556957910.4319/lo.2000.45.3.0569Search in Google Scholar

Mieczan, T. (2003). Preliminary study on planktonic ciliates in slightly eutrophic Lake Uściwierz. Acta Agroph. 1: 479-484. MieczanT.2003Preliminary study on planktonic ciliates in slightly eutrophic Lake UściwierzActa Agroph1479484Search in Google Scholar

Mironova, E., Telesh, I. & Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208-220. 10.1093/plankt/fbr095. MironovaE.TeleshI.SkarlatoS.2012Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea)J. Plankton Res3420822010.1093/plankt/fbr095Open DOISearch in Google Scholar

Mitra, A., Castellani, C., Gentleman, W.C., Jónasdóttir, S.H., Flynn, K.J. et al. (2014). Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog. Oceanogr. 129: 176-199. 10.1016/j.pocean.2014.04.025. MitraA.CastellaniC.GentlemanW.C.JónasdóttirS.H.FlynnK.J.et al2014Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton linkProg. Oceanogr12917619910.1016/j.pocean.2014.04.025Open DOISearch in Google Scholar

Montagnes, D.J.S. (1996). Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254. MontagnesD.J.S.1996Growth responses of planktonic ciliates in the genera Strobilidium and StrombidiumMar. Ecol. Prog. Ser13024125410.3354/meps130241Search in Google Scholar

Montagnes, D.J.S. (2013). Ecophysiology and behavior of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 85-121). Chichester: Wiley-Blackwell. MontagnesD.J.S.2013Ecophysiology and behavior of tintinnidsDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.EdsThe biology and ecology of tintinnid ciliates. Models for marine plankton85121ChichesterWiley-Blackwell10.1002/9781118358092.ch4Search in Google Scholar

Montagnes, D.J.S., Berges, J.A., Harrison, P.J. & Taylor, F.J.R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060. MontagnesD.J.S.BergesJ.A.HarrisonP.J.TaylorF.J.R.1994Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplanktonLimnol. Oceanogr391044106010.4319/lo.1994.39.5.1044Search in Google Scholar

Montagnes, D.J.S., Dower, J.F. & Figueiredo, G.M. (2010). The protozooplankton–ichthyoplankton trophic link: an overlooked aspect of aquatic food webs. J. Eukaryot. Microbiol. 57: 223-228. 10.1111/j.1550-7408.2010.00476.x. MontagnesD.J.S. DowerJ.F.FigueiredoG.M.2010The protozooplankton–ichthyoplankton trophic link: an overlooked aspect of aquatic food websJ. Eukaryot. Microbiol5722322810.1111/j.1550-7408.2010.00476.x20384906Open DOISearch in Google Scholar

Montagnes, D.J.S., Kimmance, S.A. & Atkinson, D. (2003). Using Q10: can growth rates increase linearly with temperature? Aquat. Microb. Ecol. 32: 307-313. MontagnesD.J.S. KimmanceS.A.AtkinsonD.2003Using Q10: can growth rates increase linearly with temperature?Aquat. Microb. Ecol3230731310.3354/ame032307Search in Google Scholar

Montagnes, D.J.S. & Lessard, E.J. (1999). Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat. Microb. Ecol. 20: 167-181. MontagnesD.J.S.LessardE.J.1999Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton bloomsAquat. Microb. Ecol2016718110.3354/ame020167Search in Google Scholar

Montagnes, D.J.S., Lynn, D.H., Roff, J.C. & Taylor, W.D. (1988). The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30. MontagnesD.J.S. LynnD.H.RoffJ.C.TaylorW.D.1988The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic roleMar. Biol99213010.1007/BF00644973Search in Google Scholar

Montagnes, D.J.S., Morgan, G., Bissinger, J.E., Atkinson, D. & Weisse, T. (2008). Short-term temperature change may impact freshwater carbon flux: a microbial perspective. Glob. Chang. Biol. 14: 2823-2838. 10.1111/j.1365-2486.2008.01700.x. MontagnesD.J.S. MorganG.BissingerJ.E.AtkinsonD.WeisseT.2008Short-term temperature change may impact freshwater carbon flux: a microbial perspectiveGlob. Chang. Biol142823283810.1111/j.1365-2486.2008.01700.xOpen DOISearch in Google Scholar

Mooij, W.M., Trolle, D., Jeppesen, E., Arhonditis, G., Belolipetsky, P.V. et al. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat. Ecol. 44: 633-667. 10.1007/s10452-010-9339-3. MooijW.M.TrolleD.JeppesenE.ArhonditisG.BelolipetskyP.V.et al2010Challenges and opportunities for integrating lake ecosystem modelling approachesAquat. Ecol4463366710.1007/s10452-010-9339-3Open DOISearch in Google Scholar

Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: 261-273. MüllerH.1989The relative importance of different ciliate taxa in the pelagic food web of Lake ConstanceMicrob. Ecol1826127310.1007/BF0207581324196206Search in Google Scholar

Müller, H. & Geller, W. (1993). Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327. MüllerH.GellerW.1993Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsideredArch. Hydrobiol12631532710.1127/archiv-hydrobiol/126/1993/315Search in Google Scholar

Müller, H., Schöne, A., Pinto-Coelho, R.M., Schweizer, A. & Weisse, T. (1991). Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119-138. MüllerH.SchöneA.Pinto-CoelhoR.M.SchweizerA.WeisseT.1991Seasonal succession of ciliates in Lake ConstanceMicrob. Ecol2111913810.1007/BF0253914824194205Search in Google Scholar

Müller, H. & Weisse, T. (1994). Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J. Plankton Res. 16: 391-401. MüllerH.WeisseT.1994Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRGJ. Plankton Res1639140110.1093/plankt/16.4.391Search in Google Scholar

Nielsen, T.G. & Kiørboe, T. (1994). Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519. NielsenT.G.KiørboeT.1994Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. CiliatesLimnol. Oceanogr3950851910.4319/lo.1994.39.3.0508Search in Google Scholar

Ohman, M.D. & Snyder, R.A. (1991). Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935. OhmanM.D.SnyderR.A.1991Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr3692293510.4319/lo.1991.36.5.0922Search in Google Scholar

Packroff, G. (2000). Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433: 157-166. PackroffG.2000Protozooplankton in acidic mining lakes with special respect to ciliatesHydrobiologia43315716610.1023/A:1004095426532Search in Google Scholar

Patterson, D.J. & Hedley, S. (2003). Free-living freshwater protozoa – a colour guide. Washington: Manson Publishing. PattersonD.J.HedleyS.2003Free-living freshwater protozoa – a colour guideWashingtonManson Publishing10.1128/9781555812751Search in Google Scholar

Pettigrosso, R.E. & Popovich, C.A. (2009). Phytoplankton-aloricate ciliate community in the Bahía Blanca Estuary (Argentina): seasonal patterns and trophic groups. Braz. J. Oceanogr. 57: 215-227. PettigrossoR.E.PopovichC.A.2009Phytoplankton-aloricate ciliate community in the Bahía Blanca Estuary (Argentina): seasonal patterns and trophic groupsBraz. J. Oceanogr5721522710.1590/S1679-87592009000300005Search in Google Scholar

Pérez, M.T., Dolan, J.R. & Fukai, E. (1997). Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar. Ecol. Prog. Ser. 155: 89-101. PérezM.T.DolanJ.R.FukaiE.1997Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepodsMar. Ecol. Prog. Ser1558910110.3354/meps155089Search in Google Scholar

Pfister, G., Auer, B. & Arndt, H. (2002a). Community analysis of pelagic ciliates in numerous different freshwater and brackish water habitats. Verh. Int. Verein. Theor. Angew. Limnol. 27: 3404-3408. PfisterG.AuerB.ArndtH.2002aCommunity analysis of pelagic ciliates in numerous different freshwater and brackish water habitatsVerh. Int. Verein. Theor. Angew. Limnol273404340810.1080/03680770.1998.11902459Search in Google Scholar

Pfister, G., Auer, B. & Arndt, H. (2002b). Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes – a community analysis at the species level. Limnologica 32: 147-168. PfisterG.AuerB.ArndtH.2002bLimnologica3214716810.1016/S0075-9511(02)80005-6Search in Google Scholar

Putland, J.N. & Iverson, R.L. (2007). Microzooplankton: major herbivores in an estuarine planktonic food web. Mar. Ecol. Prog. Ser. 345: 63-73. 10.3354/meps06841. PutlandJ.N.IversonR.L.2007Microzooplankton: major herbivores in an estuarine planktonic food webMar. Ecol. Prog. Ser345637310.3354/meps06841Open DOISearch in Google Scholar

Reiss, J. & Schmid-Araya, J.M. (2010). Life history allometries and production of small fauna. Ecology 91: 497-507. ReissJ.Schmid-ArayaJ.M.2010Life history allometries and production of small faunaEcology9149750710.1890/08-1248.120392014Search in Google Scholar

Rose, J.M. & Caron, D.A. (2007). Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52: 886-895. RoseJ.M.CaronD.A.2007Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold watersLimnol. Oceanogr5288689510.4319/lo.2007.52.2.0886Search in Google Scholar

Rychert, K. (2009). Planktonic ciliates in the coastal medium-size river: diversity and productivity. Pol. J. Ecol. 57: 503-512. RychertK.2009Planktonic ciliates in the coastal medium-size river: diversity and productivityPol. J. Ecol57503512Search in Google Scholar

Rychert, K., Wielgat-Rychert, M., Szczurowska, D., Myszka, M., Bochyńska, M. et al. (2012). The importance of ciliates as a trophic link in shallow, brackish, and eutrophic lakes. Pol. J. Ecol. 60: 767-776. RychertK.Wielgat-RychertM.SzczurowskaD.MyszkaM.BochyńskaM.et al2012The importance of ciliates as a trophic link in shallow, brackish, and eutrophic lakesPol. J. Ecol60767776Search in Google Scholar

Rychert, K. (2013). A modified dilution method reveals higher protozoan growth rates than the size fractionation method. Eur. J. Protistol. 49: 249-254. 10.1016/j.ejop.2012.08.003. RychertK.2013A modified dilution method reveals higher protozoan growth rates than the size fractionation methodEur. J. Protistol4924925410.1016/j.ejop.2012.08.00322999054Open DOISearch in Google Scholar

Rychert, K., Spich, K., Laskus, K., Pączkowska, M., Wielgat-Rychert, M. et al. (2013). Composition of protozoan communities at two stations in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268-276. 10.2478/s13545-013-0083-x. RychertK.SpichK.LaskusK.PączkowskaM.Wielgat-RychertM.et al2013Composition of protozoan communities at two stations in the coastal zone of the southern Baltic SeaOceanol. Hydrobiol. Stud4226827610.2478/s13545-013-0083-xOpen DOISearch in Google Scholar

Sandberg, J. (2007). Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic Sea. Ecol. Model. 201: 243-261. 10.1016/j.ecolmodel.2006.09.023. SandbergJ.2007Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic SeaEcol. Model20124326110.1016/j.ecolmodel.2006.09.023Open DOISearch in Google Scholar

Sanders, R.W. & Wickham, S.A. (1993). Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7: 197-223. SandersR.W.WickhamS.A.1993Planktonic protozoa and metazoa: predation, food quality and population controlMar. Microb. Food Webs7197223Search in Google Scholar

Seuthe, L., Iversen, K.R. & Narcy, F. (2011). Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34: 751-766. 10.1007/s00300-010-0930-9. SeutheL.IversenK.R.NarcyF.2011Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellatesPolar Biol3475176610.1007/s00300-010-0930-9Open DOISearch in Google Scholar

Sherr, E.B. & Sherr, B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293-308. SherrE.B.SherrB.F.2002Significance of predation by protists in aquatic microbial food websAntonie Leeuwenhoek8129330810.1023/A:1020591307260Search in Google Scholar

Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1-11. SmetacekV.1981The annual cycle of protozooplankton in the Kiel BightMar. Biol6311110.1007/BF00394657Search in Google Scholar

Sonntag, B., Posch, T., Klammer, S., Teubner, K. & Psenner, R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43: 193-207. SonntagB.PoschT.KlammerS.TeubnerK.PsennerR.2006Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depthsAquat. Microb. Ecol4319320710.3354/ame043193Search in Google Scholar

Stoecker, D.K. (2013). Predators of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 122-144). Chichester: Wiley-Blackwell. StoeckerD.K.2013Predators of tintinnidsDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.EdsThe biology and ecology of tintinnid ciliates. Models for marine plankton122144ChichesterWiley-Blackwell10.1002/9781118358092.ch5Search in Google Scholar

Stoecker, D.K. & Capuzzo J.M. (1990). Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891–908. StoeckerD.K. CapuzzoJ.M.1990Predation on protozoa: its importance to zooplanktonJ. Plankton Res1289190810.1093/plankt/12.5.891Search in Google Scholar

Stoecker, D.K., Johnson, M., de Vargas, C. & Not, F. (2009). Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57: 279-310. 10.3354/ame01340. StoeckerD.K.JohnsonM.de VargasC.NotF.2009Acquired phototrophy in aquatic protistsAquat. Microb. Ecol5727931010.3354/ame01340Open DOISearch in Google Scholar

Stoecker, D.K., Sieracki, M.E., Verity, P.G., Michaels, A.E., Haugen, E. et al. (1994). Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990. J. Mar. Biol. Ass. UK 74: 427-443. StoeckerD.K.SierackiM.E.VerityP.G.MichaelsA.E.HaugenE.et al1994Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990J. Mar. Biol. Ass. UK7442744310.1017/S0025315400039448Search in Google Scholar

Stoecker, D.K., Taniguchi, A. & Michaels, A.E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241-254. StoeckerD.K.TaniguchiA.MichaelsA.E.1989Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope watersMar. Ecol. Prog. Ser5024125410.3354/meps050241Search in Google Scholar

Stukel, M.R. & Landry, M.R. (2010). Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse models. Limnol. Oceanogr. 55: 2669-2685. 10.4319/lo.2010.55.6.2669. StukelM.R.LandryM.R.2010Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse modelsLimnol. Oceanogr552669268510.4319/lo.2010.55.6.2669Open DOISearch in Google Scholar

Tanaka, T., Rassoulzadegan, F. & Thingstad, T.F. (2004). Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoa. Biogeosciences Discuss. 1: 413-428. TanakaT.RassoulzadeganF.ThingstadT.F.2004Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoaBiogeosciences Discuss141342810.5194/bgd-1-413-2004Search in Google Scholar

Taylor, W.D. & Johannsson, O.E. (1991). A comparison of estimates of productivity and consumption by zooplankton for ciliates in Lake Ontario. J. Plankton Res. 13: 363-372. TaylorW.D.JohannssonO.E.1991A comparison of estimates of productivity and consumption by zooplankton for ciliates in Lake OntarioJ. Plankton Res1336337210.1093/plankt/13.2.363Search in Google Scholar

Tett, P. & Wilson, H. (2000). From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25: 431-446. TettP.WilsonH.2000From biogeochemical to ecological models of marine microplanktonJ. Mar. Syst2543144610.1016/S0924-7963(00)00032-4Search in Google Scholar

Tirok, K. & Gaedkem, U. (2007). Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat. Microb. Ecol. 49: 87-100. 10.3354/ame01127. TirokK.GaedkemU.2007Regulation of planktonic ciliate dynamics and functional composition during spring in Lake ConstanceAquat. Microb. Ecol498710010.3354/ame01127Open DOISearch in Google Scholar

Urrutxurtu, I., Orive, E. & de la Sota, A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Est. Coast. Shelf Sci. 57: 1169-1182. 10.1016/S0272-7714(03)00057-X. UrrutxurtuI.OriveE.de la SotaA.2003Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay)Est. Coast. Shelf Sci571169118210.1016/S0272-7714(03)00057-XOpen DOISearch in Google Scholar

Verity, P.G. (1986). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126. VerityP.G.1986Growth rates of natural tintinnid populations in Narragansett BayMar. Ecol. Prog. Ser2911712610.3354/meps029117Search in Google Scholar

Verity, P.G. & Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859-868. VerityP.G.LangdonC.1984Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett BayJ. Plankton Res685986810.1093/plankt/6.5.859Search in Google Scholar

Wallberg, P., Jonsson, P.R. & Johnstone, R. (1999). Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18: 175-185. WallbergP.JonssonP.R.JohnstoneR.1999Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystemAquat. Microb. Ecol1817518510.3354/ame018175Search in Google Scholar

Weisse, T. & Müller, H. (1998). Planktonic protozoa and the microbial food web in Lake Constance. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 53: 223-254. WeisseT.MüllerH.1998Planktonic protozoa and the microbial food web in Lake ConstanceArch. Hydrobiol. Spec. Issues Adv. Limnol53223254Search in Google Scholar

Weisse, T. & Stadler, P. (2006). Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708-1715. WeisseT.StadlerP.2006Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distributionLimnol. Oceanogr511708171510.4319/lo.2006.51.4.1708Search in Google Scholar

Weisse, T., Kirstens, N., Meyer, V.C.L., Janke, L., Lettner, S. et al. (2001). Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167-179. WeisseT.KirstensN.MeyerV.C.L.JankeL.LettnerS.et al2001Niche separation in common prostome freshwater ciliates: the effect of food and temperatureAquat. Microb. Ecol2616717910.3354/ame026167Search in Google Scholar

Weisse, T., Stadler, P., Lindström, E.S., Kimmance, S.A. & Montagnes, D.J.S. (2002). Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 47: 1447-1455. WeisseT.StadlerP.LindströmE.S.KimmanceS.A.MontagnesD.J.S.2002Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta Limnol. Oceanogr471447145510.4319/lo.2002.47.5.1447Search in Google Scholar

Weitere, M., Scherwass, A., Sieben, K.-T. & Arndt, H. (2005). Planktonic food web structure and potential carbon flow in the lower River Rhine with the focus on the role of protozoans. River Res. Applic. 21: 535-549. 10.1002/rra.825. WeitereM.ScherwassA.SiebenK.-T.ArndtH.2005Planktonic food web structure and potential carbon flow in the lower River Rhine with the focus on the role of protozoansRiver Res. Applic2153554910.1002/rra.825Open DOISearch in Google Scholar

Wiackowski, K., Brett, M.T. & Goldman, Ch.R. (1994a). Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39: 486–492. WiackowskiK.BrettM.T.GoldmanCh.R.1994aDifferential effects of zooplankton species on ciliate community structureLimnol. Oceanogr3948649210.4319/lo.1994.39.3.0486Search in Google Scholar

Wiackowski, K., Doniec, A. & Fyda, J. (1994b). An empirical study of the effect of fixation on ciliate cell volume. Mar. Microb. Food Webs 8: 59-69. WiackowskiK.DoniecA.FydaJ.1994bAn empirical study of the effect of fixation on ciliate cell volumeMar. Microb. Food Webs85969Search in Google Scholar

Wiackowski, K., Ventelä, A.-M., Moilanen, M., Saarikari, V., Vuorio, K. et al. (2001). What factors control planktonic ciliates during summer in a highly eutrophic lake? Hydrobiologia 443: 43-57. WiackowskiK.VenteläA.-M.MoilanenM.SaarikariV.VuorioK.et al2001What factors control planktonic ciliates during summer in a highly eutrophic lake?Hydrobiologia443435710.1023/A:1017592019513Search in Google Scholar

Witek, M. (1998). Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83: 163-182. WitekM.1998Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, Southern BalticInternat. Rev. Hydrobiol8316318210.1002/iroh.19980830207Search in Google Scholar

Witek, Z. & Jarosiewicz, A. (2010). The oxygen budget of two closed, dimictic lakes in the vicinity of Bytów (West Pomeranian Lake District, northern Poland). Oceanol. Hydrobiol. Stud. 39: 135-145. 10.2478/v10009-010-0022-8. WitekZ.JarosiewiczA.2010The oxygen budget of two closed, dimictic lakes in the vicinity of Bytów (West Pomeranian Lake District, northern Poland)Oceanol. Hydrobiol. Stud3913514510.2478/v10009-010-0022-8Open DOISearch in Google Scholar

Xu, R.L. & Cronberg, G. (2010). Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community structure, seasonal dynamics and long-term changes. Protistology 6: 173-187. XuR.L.CronbergG.2010Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community structure, seasonal dynamics and long-term changesProtistology6173187Search in Google Scholar

eISSN:
1897-3191
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, other, Geosciences, Life Sciences