Accesso libero

Instability of spring environmental conditions as a driver of biotic interactions and crustacean structuring in meteorite crater ponds (Morasko, Poland)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Figure 1

Location of the nature reserve “Meteorite Morasko” in Poland and location of the surveyed craters in the reserve (DP, MP and SP)
Location of the nature reserve “Meteorite Morasko” in Poland and location of the surveyed craters in the reserve (DP, MP and SP)

Figure 2

Mean values of copepod (blue bars) cladoceran (black bars) and species number (S), abundance (n; ind. l-1) and Shannon diversity index (H’) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error
Mean values of copepod (blue bars) cladoceran (black bars) and species number (S), abundance (n; ind. l-1) and Shannon diversity index (H’) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error

Figure 3

Mean number of large (nLargeClad) and small species (nSmallClad) of Cladocera (ind. l-1) in the studied months (A – April, M – May, J – June) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error
Mean number of large (nLargeClad) and small species (nSmallClad) of Cladocera (ind. l-1) in the studied months (A – April, M – May, J – June) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error

Figure 4

The redundancy analysis diagram showing the relationships between species richness (S), Shannon diversity index (H’), abundance (n)
The redundancy analysis diagram showing the relationships between species richness (S), Shannon diversity index (H’), abundance (n)

Monte Carlo test for the significance of environmental factors in explaining the variation of biocenotic parameters of the crustacean community

Factor Variance explained (%) F
Chl a 25.6 5.7

p<0.001

Cond 18.6 3.9

p<0.01

O2 17.8 3.8

p<0.01

PO4 17.8 3.7

p<0.01

Temp 17.5 3.7

p<0.01

SP 16.2 3.4

p<0.01

MP 15.8 3.3

p<0.01

Comp 15.1 3.1

p<0.01

Mean values of physico-chemical parameters, abundance of competitors and predators, and morphometric parameters with the standard error and Kruskal-Wallis test (KW-H) in the studied meteorite crater ponds (DP – deep, MP – medium and SP – small) in different moths (A – April, M – May, J – June) (Temp – water temperature, O2 – oxygen concentration, pH – pH value, Cond – electric conductivity, Chl a – chlorphyll a concentration, NO3 – nitrate content, PO4 – phosphorus content, A.com – Aedes communis, Ostrac – Ostracoda, Chaob – Chaoborus crystallinus, Comp Tot – the total number of competitors, Carn Cope – carnivorous copepods’ abundance, Pred Tot – the total number of predators

DP MP SP
A M J KW-H A M J KW-H A M J KW-H
Abiotic parameters
Temp ±C 9±3.0 13±1 14±4 10.6

p<0.01

11±3 14±3 14±5 5.0 10±3 11±2 15±3 11.7

p<0.01

O2 mg l−1 7.0±5.1 2.2±1.2 3.7±2.3 2.7 6.1±1.9 5.9±1.1 5.8±1.1 0.4 2.8±1.0 4.2±1.7 3.0±0.6 6.0

p<0.05

pH - 7.9±0.6 7.6±0.4 7.3±0.2 12.6

p<0.01

7.6±0.1 7.4±0.3 7.4±0.7 0.1 6.4±0.3 6.9±0.4 7.0±0.0 17.3

p<0.01

Cond μS cm-3 144±20 158±38 201±128 2.4 541±53 516±89 334±88 24.3

p<0.01

362±240 695±221 429±12 19.0

p<0.01

Chl a μg l-1 84±51 14±11 5±5 19.5

p<0.01

24±13 10±9 6±5 15.1

p<0.01

24±17 25±16 7±4 14.8

p<0.01

NO3 mg l-1 0.21±0.01 0.17±0.1 0.00±0.00 21.5

p<0.01

0.19±0.02 0.18±0.11 0.00±0.00 20.5

p<0.01

0.73±0.51 0.34±0.21 0.00±0.00 20.6

p<0.01

PO4 2.27±0.25 3.21±0.31 2.03±0.63 24.3

p<0.01

0.2±0.08 0.24±0.15 0.53±0.62 1.3 3.05±0.86 2.91±0.62 1.36±1.42 16.5

p<0.01

Biotic parameters
A.com ind. l-1 1±2 2±2 7±8 4.9 2±2 2±3 2±3 1.4 83.±130 4±3 4±4 7.4

p<0.05

Ostrac 662±1014 1703±1631 27±64 21.7

p<0.01

18±50 354±537 3±8 24.0

p<0.01

6±9 22±23 0.1±0.3 19.0

p<0.01

Chaob 3±4 3±8 9±9 5.6 1±1 0.2±0.4 1±1 3.4 0.1±0.3 0±0 1±1 6.1

p<0.05

Comp Tot 663±1014 1705±1630 34±62 19.2

p<0.01

20±50 357±536 5±7 22.5

p<0.01

90±132 26±24 4±4 14.8

p<0.01

Carn Cope 3±4 0.1±0.3 0±0 13.9

p<0.01

5±6 0±0 0.1±0.3 18.5

p<0.01

1±1 1±3 0±0 8.9

p<0.05

Pred Tot 8±7 8±16 18±17 5.2 7±8 0.3±1 2±3 12.7

p<0.01

1±2 1±2 1±1 3.1
Morphometric parameters
Maximum crater diameter m 40 27 16
Maximum pond diameter 35 25 20
Maximum pond depth 1.5 1 0.5

Mean values of cladoceran and copepod abundance with the list of dominant species in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different months (A – April, M – May, J – June) with the standard error and Kruskal-Wallis test (KW-H) (Large Clad – large cladocerans, Small Clad – small cladocerans, Clad ♂ – cladoceran males, Cope Larvae – copepod larvae, Cope Adult – adult forms of copepods)

Unit DP MP SP
A M J KW-H A M J KW-H A M J KW-H
Large Clad ind. l-1 10±18 56±43 29±23 15.6

p<0.01

3±4 33±26 7±5 19.3

p<0.01

21±41 139±123 49.±58 14.2

p<0.01

Small Clad 0.2±0.5 2±2 9±13 12.0

p<0.01

1±2 25±17 22±19 17.9

p<0.01

1±2 3±2 12±9 23.4

p<0.01

Clad 0.3±1 8±10 0±0 11.6

p<0.01

1±1 4±5 1±1 17.2

p<0.01

8±17 85±90 3±3 21.5

p<0.01

Cope Larvae 361±240 97±40 241±258 4.7 200±147 264±106 286±90 4.1 134±101 307±324 180±120 2.9
Cope Adult 12±18 19±16 10±9 3.4 10±11 5±5 5±4 0.8 5±4 11±10 1±1 14.8

p<0.01

Alonella excisa + + +
Bosmina longirostris +
Chydorus sphaericus +
Daphnia pulex + + + + + + +
Scapholeberis mucronata +
Simocephalus exspinosus + + +
Cyclops vicinus + +
Megacyclops viridis + + + + +
eISSN:
1897-3191
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, other, Geosciences, Life Sciences