Accesso libero

Multibarrier system preventing migration of radionuclides from radioactive waste repository

, , ,  e   
25 set 2015
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

1. CEA. (2012). Report on sustainable radioactive waste management. (2012). CEA Nuclear Energy Division, Saclay Center.Search in Google Scholar

2. Zakrzewska-Trznadel, G., Zielińska, B., Sommer, S., & et al. (2012). Określenie strategii badawczo-rozwojowej dla potrzeb planu postępowania z odpadami promieniotwórczymi i wypalonym paliwem. Warsaw: IChTJ. (IV/17/P/15004/4390/12/DEJ). Unpublished document.Search in Google Scholar

3. Chapman, N., & Hooper, A. (2011). The disposal of radioactive wastes underground. In Proceedings of the Geologists’ Association, 123, (pp. 46-63).Search in Google Scholar

4. Engineered Barrier Systems (EBS): Design Requirements and Constraints. (2004). Workshop Proceedings, Turku, Finland, 26-29 August 2003, in co-operation with the European Commission and hosted by Posiva Oy, Finland.Search in Google Scholar

5. Zakrzewska-Trznadel, G., Harasimowicz, M., & Chmielewski, A. G. (2001). Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Sep. Purif. Technol., 22/23, 617-625.10.1016/S1383-5866(00)00167-2Search in Google Scholar

6. Tomaszewska, B., & Bodzek, M. (2013). The removal of radionuclides during desalination of geothermal waters containing boron using the BWRO system. Desalination, 309, 284-290.10.1016/j.desal.2012.10.027Search in Google Scholar

7. Wdowin, M., Franus, M., Panek, R., Bandura, L., & Franus, W. (2014). The conversion technology of fl y ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217-1223. DOI: 10.1007/ s10098-014-0719-6, http://wbia.pollub.pl/files/102/attachment/2382_clean.pdf. Search in Google Scholar

8. IAEA. (2001). Performance of engineered barrier materials in near surface disposal facilities for radioactive waste, results of a coordinated research project. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1255).Search in Google Scholar

9. IPPA Report from I Workshop in Poland IPPA FP7-269849 Project Deliverable 6.3, date of issue 08.03.2012; Project co-funded by the European Commission under the Seventh Euratom Framework Programme for Nuclear Research and Training Activities (2007-2011).Search in Google Scholar

10. Lankof, L., & Pająk, L. (2014). Założenia metodyczne w zakresie modelowania migracji radionuklidów w środowisku geologicznym w sąsiedztwie składowisk nisko i średnioaktywnych odpadów promieniotwórczych. Technika Poszukiwań Geologicznych Geotermia, Zrównoważony Rozwój nr 2/2014. Wyd. IGSMiE PAN.Search in Google Scholar

11. IAEA. (2004). Safety Assessment Methodologies for Near Surface Disposal Facilities Vol. 1 - Review and enhancement of safety assessment approaches and tools. Vienna: International Atomic Energy Agency.Search in Google Scholar

12. Crăciun, C. (1997). Mineralogical, physical and chemical research of clay deposits from Saligny area. Economical Contract no. 37.1/1997, Romanian Academy for Science in Agriculture and Forestry ‘Gheorghe Ionescu-Siseşti’. Bucharest Institute for Research in Pedology and Agro-chemistry.Search in Google Scholar

13. Bondietti, E. A. (1982). Mobile species of Pu, Am, Cm, Np and Tc in the environment. Environmental Migration of Long-Lived Radionuclides. Vienna: International Atomic Energy Agency. (SM257/42).Search in Google Scholar

14. Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. Lawrence Berkeley National Laboratory.Search in Google Scholar

15. Curtis, M., Oldenburg, C., & Pruess, K. (1995). EOS7R: Radionuclide Transport for TOUGH2, Berkeley: Lawrence Berkeley National Laboratory. (Report LBL-34868).Search in Google Scholar

16. Pruess, K., Oldenburg, C., & Moridis, G. (2012). TOUGH2 User’s Guide, Version 2. (p. 197). Berkeley: Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California.Search in Google Scholar

17. Dendys, M., Tomaszewska, B., & Pająk, L. (2014). Modelowanie numeryczne jako narzędzie wspomagające badania systemów geotermalnych. In A. Krawiec & I. Jamroska (Eds.), Modele matematyczne w hydrogeologii (pp. 199-206). Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.Search in Google Scholar

18. Bujakowski, W., & Tomaszewska, B. (Eds.). (2014). Atlas wykorzystania wód termalnych do skojarzonej produkcji energii elektrycznej i cieplnej w układach binarnych w Polsce (Atlas of the possible use of geothermal waters for combiner production of electricity and heat using binary systems in Poland). Kraków: Wydawnictwo “Jak”.Search in Google Scholar

19. Śliwa, T., Gonet, A., Złotkowski, A., Pająk, L., Sapińska-Śliwa, A., & Jezuit, Z. (2012). Zintegrowany system otworowych wymienników ciepła i kolektorów słonecznych. Monografi e Wydawnictw Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie 0474 (pp. 161-165, abstract). Kraków: AGH. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chimica, Chimica nucleare, Fisica, Astronomia ed astrofisica, Fisica, altro