Accesso libero

A Monte Carlo study on dose enhancement and photon contamination production by various nanoparticles in electron mode of a medical linac

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. McMahon, S., Mendenhall, M., & Jain, S. (2008). Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys. Med. Biol., 53(20), 5635–5651. DOI: 10.1088/0031-9155/53/20/005.10.1088/0031-9155/53/20/005Search in Google Scholar

2. Ghasemi, M. R., Zafarghandi, M., & Raisali, G. (2010). Monte Carlo simulation of dose absorption of nano-particles-labeled tissues used in x-ray microbeam radiation therapy. J. Nucl. Sci. Technol., 50(4), 37–47.Search in Google Scholar

3. Cho, S. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys. Med. Biol., 50(15), 163–173. DOI: 10.1088/0031-9155/50/15/N01.10.1088/0031-9155/50/15/N01Search in Google Scholar

4. Zhang, S. X., Gao, J., & Buchholz, T. A. (2009). Quantifying tumour-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed. Microdevices, 11(4), 925–933. DOI: 10.1007/s10544-009-9309-5.10.1007/s10544-009-9309-5Search in Google Scholar

5. Khatib, E., Scrimger, J., & Murray, B. (1991). Reduction of the bremsstrahlung component of clinical electron beams: implications for electron arc therapy and total skin electron irradiation. Phys. Med. Biol., 36(1), 111–118. DOI: 10.1088/0031-9155/36/1/010.10.1088/0031-9155/36/1/010Search in Google Scholar

6. Cho, S., Jong, H., & Chan, H. (2010). Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J. Korean Phys. Soc., 56(6), 1754–1758. DOI: 10.3938/jkps.56.1754.10.3938/jkps.56.1754Search in Google Scholar

7. Chow, J. C., Leung, M. K., & Jaffray, D. A. (2012). Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys. Med. Biol., 57(11), 3323–3331. DOI: 10.1088/0031-9155/57/11/3323.10.1088/0031-9155/57/11/3323Search in Google Scholar

8. Rahman, W. N., Wong, C. J., & Ackerly, T. (2012). Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation does enhancement in synchrotron and conventional radiotherapy type beams. Australas. Phys. Eng. Sci. Med., 35(3), 301–309. DOI: 10.1007/s13246-012-0157-x.10.1007/s13246-012-0157-xSearch in Google Scholar

9. Rahman, W. N., Bishara, N., & Ackerly, T. (2009). Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine, 5(2), 136–142. http://dx.doi.org/10.1016/j.nano.2009.01.014.Search in Google Scholar

10. Jabari, N., & Hashemi, B. (2009). An assessment of the photon contamination due to bremsstrahlung radiation in the electron beams of a Neptun 10PC linac using a Monte Carlo method. Iran. J. Med. Phys., 6(1), 21–32.Search in Google Scholar

11. Mahdavi, M., Mahdavi, S. R. M., & Alijanzadeh, H. (2011). Comparing the measurement value of photon contamination absorbed dose in electron beam field for Varian clinical accelerator. IUP J. Phys., 5(3), 7–11.Search in Google Scholar

12. Sharma, A. K., Supe, S. S., & Anantha, N. (1995). Physical characteristics of photon and electron beams from a dual energy linear accelerator. Med. Dosim., 20(1), 55–66. DOI: 10.1016/0958-3947(94)00019-F.10.1016/0958-3947(94)00019-FSearch in Google Scholar

13. Gur, D., Bukovitz, A. G., & Serago, C. (1979). Photon contamination in 8-20-MeV electron beams from a linear accelerator. Med. Phys., 6(2), 145–146. DOI: 10.1118/1.594525.10.1118/1.594525111019Search in Google Scholar

14. Bruno, B., Hyodynmaa, S., & Brahme, A. (1997). Quantification of mean energy and photon contamination for accurate dosimetry of high-energy electron beams. Phys. Med. Biol., 42(10), 1849–1873. DOI: 10.1088/0031-9155/42/10/001.10.1088/0031-9155/42/10/001Search in Google Scholar

15. Bahreyni Toossi, M. T., Ghorbani, M., & Akbari, F. (2013). Monte Carlo modeling of electron modes of a Siemens Primus linac (8, 12 and 14 MeV). J. Radiother. Pract., 12(4), 352–359. DOI: 10.1017/S1460396912000593.10.1017/S1460396912000593Search in Google Scholar

16. Reich, P. D. (2008). A theoretical evaluation of transmission dosimetry in 3D conformal radiotherapy. Doctoral dissertation, Adelaide University of Australia. Retrieved 17 March 2015, from https://digital.library.adelaide.edu.au/dspace/bitstream/2440.Search in Google Scholar

17. Waters, L. S. (2002). MCNPX User’s Manual, Version 2.4.0. Los Alamos National Laboratory (LACP-02-408).Search in Google Scholar

18. ICRU. (1989). Tissue substitutes in radiation dosimetry and measurement. Bethesda, MD: ICRU (ICRU Report No. 44).Search in Google Scholar

19. Guidelli, E. J., & Baffa, O. (2014). Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Med. Phys., 41(3), 032101. DOI: 10.1118/1.4865809.10.1118/1.4865809Search in Google Scholar

20. Iwamoto, K. S., Cochran, S. T., & Winter, J. (1987). Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumors. Radiother. Oncol., 8(2), 161–170. http://dx.doi.org/10.1016/S0167-8140(87)80170-6.Search in Google Scholar

21. Klein, S., Sommer, A., & Distel, L. (2014). Superparamagnetic iron oxide nanoparticles as novel x-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B., 118(23), 6159–6166. DOI: 10.1021/jp5026224.10.1021/jp502622424827589Search in Google Scholar

22. Roeske, J. C., Nunez, L., & Hoggarth, M. (2007). Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol. Cancer Res. Treat., 6(5), 395–401.10.1177/15330346070060050417877427Search in Google Scholar

23. Kim, J. K., Seo, S. J., & Kim, K. H. (2010). Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology, 21(42), 425102. DOI: 10.1088/0957-4484/21/42/425102.10.1088/0957-4484/21/42/42510220858930Search in Google Scholar

24. Bakhshabadi, M., Ghorbani, M., & Soleimani Meigooni, A. (2013). Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media. Australas. Phys. Eng. Sci. Med., 36(3), 301–311. DOI: 10.1007/s13246-013-0214-0.10.1007/s13246-013-0214-023934379Search in Google Scholar

25. McMahon, S. J., Hyland, W. B., & Muir, M. F. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep., 1(18), 1–9. DOI: 10.1038/srep00018.10.1038/srep00018321650622355537Search in Google Scholar

26. Leung, M. K. K., Chow, J. C. C., & Chithrani, B. (2011). Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med. Phys., 38(2), 624–631. DOI: 10.1118/1.3539623.10.1118/1.353962321452700Search in Google Scholar

27. Ghorbani, M., Pakravan, D., & Bakhshabadi, M. (2012). Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modeling. Nukleonika, 57(3), 401–406.Search in Google Scholar

eISSN:
0029-5922
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other