1. bookVolume 61 (2015): Edizione 3 (June 2015)
Dettagli della rivista
License
Formato
Rivista
eISSN
2385-8052
Prima pubblicazione
22 Feb 2015
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Kalman Filter or VAR Models to Predict Unemployment Rate in Romania?

Pubblicato online: 25 Jun 2015
Volume & Edizione: Volume 61 (2015) - Edizione 3 (June 2015)
Pagine: 3 - 21
Ricevuto: 01 Feb 2015
Accettato: 01 Apr 2015
Dettagli della rivista
License
Formato
Rivista
eISSN
2385-8052
Prima pubblicazione
22 Feb 2015
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Allan, G. (2013). Evaluating the usefulness of forecasts of relative growth.Sire Discussion Paper,2013-10, 1-26.Search in Google Scholar

2. Barnichon, R., Nekarda, C. J., Hatzius, J., Stehn, S. J., &Petrongolo, B. (2012). The Ins and Outs of Forecasting Unemployment: Using Labor Force Flows to Forecast the Labor Market [with Comments and Discussion]. Brookings Papers on Economic Activity, 83-131. http://dx.doi.org/10.1353/eca.2012.001810.1353/eca.2012.0018Search in Google Scholar

3. Bratu, M.(2012).The reduction of uncertainty in making decisions by evaluating the macroeconomic forecasts performance in Romania.Economic Research-Scientific Journal, 25(2), 239-262.10.1080/1331677X.2012.11517506Search in Google Scholar

4. Camba-Mendez, G. (2012). Conditional forecasts on SVAR models using theKalman filter.Economics Letters, 115(3), 376-378. http:// dx.doi.org/10.1016/j.econlet.2011.12.08710.1016/j.econlet.2011.12.087Search in Google Scholar

5. Clements, M. P., & Hendry, D. F. (2003). On the limitations of comparing mean squared forecast errors (with discussion). Journal of Forecasting, 12, 617-639. http://dx.doi.org/10.1002/for.398012080210.1002/for.3980120802Search in Google Scholar

6. Franses, P. H., McAleer, M., &Legerstee, R. (2012).Evaluating macroeconomic forecasts: a concise review of some recent developments. Kier Discussion Paper Series, 821, 1-29.Search in Google Scholar

7. Franses, P. H., Paap, R., &Vroomen, B. (2004).Forecasting unemployment using an autoregression with censored latent effects parameters.International Journal of Forecasting, 20(2), 255-271. http://dx.doi.org/10.1016/j.ijforecast.2003.09.00410.1016/j.ijforecast.2003.09.004Search in Google Scholar

8. Heilemann, U., &Stekler, H. O. (2013). Has The Accuracy of Macroeconomic Forecasts for Germany Improved?.German Economic Review, 14(2), 235-253. http://dx.doi.org/10.1111/j.1468-0475.2012.00569.x10.1111/j.1468-0475.2012.00569.xSearch in Google Scholar

9. Hodrick, R., & Prescott, E. C. (1997). Postwar U.S. business cycles: An empirical investigation. Journal of Money, Credit and Banking, 1-16. http://dx.doi.org/10.2307/295368210.2307/2953682Search in Google Scholar

10. Kishor, N. K., & Koenig E. F. (2012).VAR estimation and forecasting when data are subject to revision.Journal of Business & Economic Statistics, 30(2), 181-190.Search in Google Scholar

11. Koopman, S.J., Shephard, N.&Doornik, J.A. ( 1999). Statistical algorithms for models in state space using SsfPack 2.2.Econometrics Journal, 2(1), 107-160. http://dx.doi.org/10.1111/1368-423X.0002310.1111/1368-423X.00023Search in Google Scholar

12. Kurita, T. (2010).A forecasting model for Japan’s unemployment rate.Eurasian Journal of Business and Economics, 3(5), 127-134.Search in Google Scholar

13. Lack, C. (2006).Forecasting Swiss inflation using VAR models.Swiss National Bank Economic Studies, 2.Search in Google Scholar

14. Milas, C.,&Rothman, F. (2008). Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts.International Journal of Forecasting, 24(1), 101-121. http://dx.doi.org/10.1016/j.ijforecast.2007.12.00310.1016/j.ijforecast.2007.12.003Search in Google Scholar

15. Proietti, T. (2003). Forecasting the US unemployment rate.Computational Statistics & Data Analysis, 42(3), 451-476. http://dx.doi. org/10.1016/S0167-9473(02)00230-X10.1016/S0167-9473(02)00230-XSearch in Google Scholar

16. Razzak, W. (1997). The Hodrick-Prescott technique: A smoother versus a filter: An application to New Zealand GDP.Economics Letters, 57(2), 163-168. http://dx.doi.org/10.1016/S0165-1765(97)00178-X10.1016/S0165-1765(97)00178-XSearch in Google Scholar

17. Robinson, W. (1998). Forecasting inflation using VAR Analysis.Bank of Jamaica.Retrieved from http://www.boj.org.jm/uploads/pdf/papers_pamphlets/papers_pamphlets_forecasting_inflation_using_var_analysis.pdfSearch in Google Scholar

18. Sermpinis, G., Stasinakis, C., &Karathanasopoulos, A. (2013).Kalmanfilter and SVR combinations in forecasting US unemployment. Artificial Intelligence Applications and InnovationsIFIP Advances in Information and Communication Technology, 412, 506-515.Search in Google Scholar

19. vanDijk, D., Teräsvirta, T., &Franses, P.H. (2000). Smooth transition autoregressive models-Asurvey of recent developments. Working Paper Series in Economics andFinance, No. 380, Stockholm School of EconomicsSearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo