INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Oczos, K.E., Liubimov, V. (2003). Struktura geometryczna powierzchni [Surface Geometric Structure]. Rzeszow, Poland: Rzeszow Technical University Publishing House. (in Polish)Search in Google Scholar

[2] Berglund, J., Brown C.A., Rose, B.G., Bay, N. (2010). Milled die steel surface roughness correlation with steel sheet friction. CIRP Annals - Manufacturing Technology, 59, 577-580.10.1016/j.cirp.2010.03.140Search in Google Scholar

[3] Sedlacek, M., Podgornik, B., Vizintin, J. (2012). Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribology International, 48, 102-112.10.1016/j.triboint.2011.11.008Search in Google Scholar

[4] Stout, K., Davis, E.I., Sullivan, P.I. (1990). Atlas of Machined Surfaces. Chapman and Hall.10.1007/978-94-011-7772-6Search in Google Scholar

[5] Stout, K.J., Dong, W.P., Mainsah, E. (1993). A proposal for standardization of assessment of threedimensional micro-topography - Part 1. Surface digitisation and parametric characterisation. University of Birmingham.Search in Google Scholar

[6] Thomas, T.R. (1999). Rough Surfaces. Imperial College Press.Search in Google Scholar

[7] Niemczewska-Wójcik, M. (2017). Multi-sensor measurements of titanium alloy surface texture formed at subsequent operations of precision machining process. Measurement, 96, 8-17.10.1016/j.measurement.2016.10.049Search in Google Scholar

[8] Low, K.O. (2011). Surface characteristics modification of polyoxymethylene and polyurethane using burnishing. Tribology Transactions, 54 (1), 96-103.Search in Google Scholar

[9] Yusof, N.F.M., Ripin, Z.M. (2014). Analysis of surface parameters and vibration of roller bearing. Tribology Transactions, 57 (4), 715-729.10.1080/10402004.2014.895887Search in Google Scholar

[10] Coutinho, R., Marinescu, I.D. (2005). Methodology to compare 3-D and 2-D parameters for the optimization of hard turned surfaces. Machining Science and Technology, 9 (3), 383-409.10.1080/10910340500196330Search in Google Scholar

[11] Wang, G., Zhou, X., Meng, G., Yang, X. (2017). Modeling surface roughness for polishing process based on abrasive cutting and probability theory. Machining Science and Technology, 22 (1), 86-98.Search in Google Scholar

[12] Grzesik, W. (2016). Prediction of the functional performance of machined components based on surface topography: State of the art. Journal of Materials Engineering and Performance, 25 (10), 4460-4468.10.1007/s11665-016-2293-zSearch in Google Scholar

[13] Wagner, J.J., Jenson, A.D., Sundararajan, S. (2017). The effect of contact pressure and surface texture on running-in behavior of case carburized steel under boundary lubrication. Wear, 376-377, 851-857.10.1016/j.wear.2017.02.016Search in Google Scholar

[14] Krzyzak, Z., Pawlus, P. (2006). ‘Zero-wear’ of piston skirt surface topography. Wear, 260, 554-561.10.1016/j.wear.2005.03.038Search in Google Scholar

[15] Profito, F.J., Vlădescu, S-C., Reddyhoff, T., Dini, D. (2017). Transient experimental and modelling studies of laser-textured microgrooved surfaces with a focus on piston-ring cylinder liner contacts. Tribology International, 113, 125-136.10.1016/j.triboint.2016.12.003Search in Google Scholar

[16] Khelifi, C., Do, M.T., Kane, M., Adenot Meyer, M. (2017). Wear and wet friction of steel tracks for rubber-tired metros. Wear, 376-377, 1912-1918.10.1016/j.wear.2017.01.066Search in Google Scholar

[17] Niemczewska-Wójcik, M. (2016). Multi-sensor measurements of titanium alloy surface texture formed at subsequent operations of precision machining process. Measurement, 96, 8-17.10.1016/j.measurement.2016.10.049Search in Google Scholar

[18] Kang, Y.S., Hager, C.H., Evans, R.D. (2015). Effects of skewed surface textures on lubricant film thickness and traction. Tribology Transactions, 58 (3), 397-406.10.1080/10402004.2014.980592Search in Google Scholar

[19] Gherca, A., Fatu, A., Hajjam, M., Maspeyrot, P. (2013). Influence of surface geometry on the hydrodynamic performances of parallel bearings in transient flow conditions. Tribology Transactions, 56 (6), 953-967.10.1080/10402004.2013.813997Search in Google Scholar

[20] Sedlaček, M., Gregorčič, P., Podgornik, B. (2017). Use of the roughness parameters Ssk and Sku to control friction-a method for designing surface texturing. Tribology Transactions, 60 (2), 260-266.10.1080/10402004.2016.1159358Search in Google Scholar

[21] Wang, L., Ouyang, W., Gao, W., Xu, B. (2017). Instrumental evaluation of fabric abrasive wear using 3D surface images. Journal of the Textile Institute, 108 (5), 846-851.10.1080/00405000.2016.1193993Search in Google Scholar

[22] Lu, W., Zhang, G., Liu, X., Zhou, L., Chen, L., Jiang, X. (2014). Prediction of surface topography at the end of sliding running-in wear based on areal surface parameters. Tribology Transactions, 57 (3), 553-560.10.1080/10402004.2014.887165Search in Google Scholar

[23] Masuko, M., Aoki, S., Suzuki, A. (2005). Influence of lubricant additive and surface texture on the sliding friction characteristics of steel under varying speeds ranging from ultralow to moderate. Tribology Transactions, 48 (3), 289-298.10.1080/05698190590965558Search in Google Scholar

[24] Eiss, N.S., Bayraktaroglu, M.M. (1980). The effect of surface roughness on the wear of low-density polyethylene. ASLE Transactions, 23 (3), 269-278.10.1080/05698198008982969Search in Google Scholar

[25] Shi, X., Wang, L., Qin, F. (2016). Relative fatigue life prediction of high-speed and heavy-load ball bearing based on surface texture. Tribology International, 10, 364-374.10.1016/j.triboint.2016.05.007Search in Google Scholar

[26] Trauth, D., Klocke, F., Welling, D., Terhorst, M., Mattfeld, P., Klink, A. (2016). Investigation of the surface integrity and fatigue strength of Inconel718 after wire EDM and machine hammer. International Journal of Material Forming, 9 (5), 635-651.10.1007/s12289-015-1249-4Search in Google Scholar

[27] Qi, Q., Li, T., Scott, P.J., Jiang, X. (2015). A correlational study of areal surface texture parameters on some typical machined surfaces. Procedia CIRP, 27, 149-154.10.1016/j.procir.2015.04.058Search in Google Scholar

[28] Rosen, B.G., Anderberg, C., Ohlsson, R. (2008). Parameter correlation study of cylinder liner roughness for production and quality control. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222, 1475-1487.10.1243/09544054JEM1201Search in Google Scholar

[29] Das, J., Linke, B. (2017). Evaluation and systematic selection of significant multi-scale surface roughness parameters (SRPs) as process monitoring index. Journal of Materials Processing Technology, 244, 157-165.10.1016/j.jmatprotec.2017.01.017Search in Google Scholar

[30] Franco, L.A., Sinatora, A. (2015). 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precision Engineering, 40, 106-111.10.1016/j.precisioneng.2014.10.011Search in Google Scholar

[31] Korzynski, M. (2013). Slide diamond burnishing. In Nonconventional Finishing Technologies. Warsaw, Poland: Polish Scientific Publishers PWN.Search in Google Scholar

[32] Korzynski, M. (2017). Metodyka eksperymentu [Methodology of Experiment]. Warsaw, Poland: Science Publishing Home. (in Polish)Search in Google Scholar

[33] Korzynski, M., Lubas, J., Swirad, S., Dudek, K. (2011). Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. Journal of Materials Processing Technology, 211 (1), 84-94.10.1016/j.jmatprotec.2010.08.029Search in Google Scholar

eISSN:
1335-8871
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing