Accesso libero

A few results on some nonlinear parabolic problems in Orlicz-Sobolev spaces

  
16 mag 2019
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

In this paper, we present our results (see our papers), which concern the existence of the renormalized solutions for equations of the type:

b(x,u)t-div(a(x,t,u,u))-div(Φ(x,t,u))=finQ=Ω×(0,T),$${{\partial b(x,u)} \over {\partial t}} - {\rm{div}}\left( {a(x,t,u,\nabla u)} \right) - {\rm{div}}\left( {\Phi \left( {x,t,u} \right)} \right) = f\,\,\,{\rm{in}}\,Q = \Omega \times (0,T),$$

where b(x, ·) is a strictly increasing C1-function for any x ∈ Δ, a(x, t, s, ξ) and Φ(x, t, s) are a Carathéodory functions. The function f is in L1(Q).