Accesso libero

A bifurcation result involving Sobolev trace embedding and the duality mapping of W1,p

  
28 lug 2018
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

We consider the perturbed nonlinear boundary condition problem

{-Δpu=|u|p-2u+f(λ,x,u)inΩ|u|p-2u.ν=λρ(x)|u|p-2uonΓ.$$\left\{ {\matrix{ { - \Delta _p u} \hfill & = \hfill & {\left| u \right|^{p - 2} u + f\left( {\lambda ,x,u} \right)\,{\rm{in}}\,\Omega } \hfill \cr {\left| {\nabla u} \right|^{p - 2} \nabla u.\nu } \hfill & = \hfill & {\lambda \rho \left( x \right)\left| u \right|^{p - 2} u\,{\rm{on}}\,\Gamma .} \hfill \cr } } \right.$$

Using the Sobolev trace embedding and the duality mapping defined on W1,p(Ω), we prove that this problem bifurcates from the principal eigenvalue λ1 of the eigenvalue problem

{-Δpu=|u|p-2uinΩ|u|p-2u.ν=λρ(x)|u|p-2uonΓ.$$\left\{ {\matrix{ { - \Delta _p u} \hfill & = \hfill & {\left| u \right|^{p - 2} u\,{\rm{in}}\,\Omega } \hfill \cr {\left| {\nabla u} \right|^{p - 2} \nabla u.\nu } \hfill & = \hfill & {\lambda \rho \left( x \right)\left| u \right|^{p - 2} u\,{\rm{on}}\,\Gamma .} \hfill \cr } } \right.$$