1. bookVolume 60 (2016): Edizione 2 (June 2016)
Dettagli della rivista
License
Formato
Rivista
eISSN
1804-1213
Prima pubblicazione
03 Apr 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Microbial corrosion of metallic materials in a deep nuclear-waste repository

Pubblicato online: 12 May 2016
Volume & Edizione: Volume 60 (2016) - Edizione 2 (June 2016)
Pagine: 59 - 67
Dettagli della rivista
License
Formato
Rivista
eISSN
1804-1213
Prima pubblicazione
03 Apr 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Zegeye, A., et al., Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite. Geobiology2010,8 (3), 209-222.10.1111/j.1472-4669.2010.00238.xSearch in Google Scholar

2. Diósi, G., et al., Corrosion influenced by biofilms during wet nuclear waste storage. International Biodeterioration & Biodegradation2003,51 (2), 151-156.10.1016/S0964-8305(02)00138-5Search in Google Scholar

3. Li, F.-s., et al., Corrosion inhibition of stainless steel by a sulfate-reducing bacteria biofilm in seawater. International Journal of Minerals, Metallurgy, and Materials2012,19 (8), 717-725.10.1007/s12613-012-0618-ySearch in Google Scholar

4. Sheng, X., et al., The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corrosion Science2007,49 (5), 2159-2176.10.1016/j.corsci.2006.10.040Search in Google Scholar

5. Yuan, S. J., et al., The Influence of the Marine Aerobic Pseudomonas Strain on the Corrosion of 70/30 Cu-Ni Alloy. ECS Transactions2007,2 (9), 159-192.10.1149/1.2408937Search in Google Scholar

6. Mankowski, J.; Szklarska-Smialowska, Z., Studies on accumulation of chloride ions in pits growing during anodic polarization Corrosion Science1975,15, 493-501.Search in Google Scholar

7. Suzuki, T., et al., Composition of Anolyte Within Pit Anode of Austenitic Stainless Steels in Chloride Solution. Corrosion1973,29, 18-22.10.5006/0010-9312-29.1.18Search in Google Scholar

8. Belkaid, S., et al., Effect of biofilm on naval steel corrosion in natural seawater. Journal of Solid State Electrochemistry2010,15 (3), 525-537.10.1007/s10008-010-1118-5Search in Google Scholar

9. Hernández-Gayosso, M. J., et al., Microbial consortium influence upon steel corrosion rate, using the electrochemical impedance spectroscopy technique. Materials and Corrosion2004,55 (9), 676-683.10.1002/maco.200303791Search in Google Scholar

10. Chen, S., et al., Corrosion behavior of copper under biofilm of sulfate-reducing bacteria. Corrosion Science2014,87, 407-415.10.1016/j.corsci.2014.07.001Search in Google Scholar

11. Dong, Z. H., et al., Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corrosion Science2011,53 (9), 2978-2987.10.1016/j.corsci.2011.05.041Search in Google Scholar

12. Xu, P., et al., Chemical and electron microbial influenced corrosion. Journal of Chemical and Pharmaceutical Research2013,5 (12), 476-481.Search in Google Scholar

13. Bergel, A., Recent Advances in Electron Transfer Between Biofilms and Metals. Advanced Materials Research2007,20/21, 329-334.10.4028/www.scientific.net/AMR.20-21.329Search in Google Scholar

14. Dinh, H. T., et al., Iron corrosion by novel anaerobic microorganisms. Nature2004,427, 829-832.10.1038/nature0232114985759Search in Google Scholar

15. Pérez, E. J., et al., Influence of Desulfovibrio sp. biofilm on SAE 1018 carbon steel corrosion in synthetic marine medium. Corrosion Science2007,49 (9), 3580-3597.10.1016/j.corsci.2007.03.034Search in Google Scholar

16. Babauta, J. T.; Beyenal, H., Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes. Biotechnol Bioeng2014,111 (2), 285-94.10.1002/bit.25105424783323996084Search in Google Scholar

17. Deslouis, C.; Tribollet, B., Recent developments in the electro-hydrodynamic (EHD) impedance technique. Journal of Electroanalytical Chemistry2004,572 (2), 389-398.10.1016/j.jelechem.2004.03.035Search in Google Scholar

18. L’Hostis, E., et al., Characterization of Biofilms Formed on Gold in Natural Seawater by Oxygen Diffusion Analysis. Corrosion1997,53 (10), 4-10.10.5006/1.3280433Search in Google Scholar

19. Pires, L., et al., Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosens Bioelectron2013,47, 157-63.10.1016/j.bios.2013.03.01523570679Search in Google Scholar

20. Liu, H., et al., Specification of sulfate reducing bacteria biofilms accumulation effects on corrosion initiation. Materials and Corrosion2007,58 (1), 44-48.10.1002/maco.200603984Search in Google Scholar

21. King, F., et al., Modelling long term corrosion behaviour of copper canisters in KBS-3 repository. Corrosion Engineering, Science and Technology2011,46 (2), 217-222.10.1179/18211Y.0000000004Search in Google Scholar

22. Schutz, M. K., et al., Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity. Bioelectrochemistry2014,97, 61-8.10.1016/j.bioelechem.2013.07.00324064199Search in Google Scholar

23. Zhang, H., et al., Study of biofilm influenced corrosion on cast iron pipes in reclaimed water. Applied Surface Science2015,357, 236-247.10.1016/j.apsusc.2015.09.021Search in Google Scholar

24. Behrends, T., et al., Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories. Applied Geochemistry2012,27 (2), 453-462.10.1016/j.apgeochem.2011.09.014Search in Google Scholar

25. Féron, D.; Crusset, D., Microbial induced corrosion in French concept of nuclear waste underground disposal. Corrosion Engineering, Science and Technology2014,49 (6), 540-547.10.1179/1743278214Y.0000000193Search in Google Scholar

26. King, F., Microbiologically Influenced Corrosion of Nuclear Waste Containers. Corrosion2009,65 (4), 233-251.10.5006/1.3319131Search in Google Scholar

27. King, F., Container Materials for the Storage and Disposal of Nuclear Waste. Corrosion2013,69 (10), 986-1011.10.5006/0894Search in Google Scholar

28. Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada; DOE/EIS-0250F-S1; 2008.Search in Google Scholar

29. Pedersen, K. Microbial features, events and processes in the Swedish final repository for lowand intermediate-level radioactive waste; SKB Technical Report R-01-05; 2001.Search in Google Scholar

30. Jolley, D. M., et al., Microbial Impacts to the Near-Field Environment Geochemistry: a model for estimating microbial communities in repository drifts at Yucca Mountain. Journal of Contaminant Hydrology2003,62-63, 553-575.10.1016/S0169-7722(02)00187-0Search in Google Scholar

31. Wang, Y.; Francis, A. J., Evaluation of Microbial Activity for Long-Term Performance Assessments of Deep Geologic Nuclear Waste Repositories Journal of Nuclear and Radiochemical Sciences2005,6 (1), 43-50.10.14494/jnrs2000.6.43Search in Google Scholar

32. Pedersen, K. Microbial processes in radioactive waste disposal; SKB Technical Report TR-00-04; 2000.Search in Google Scholar

33. Mulligan, C., et al., Some effects of microbial activity on the evolution of clay-based buffer properties in underground repositories. Applied Clay Science2009,42 (3-4), 331-335.10.1016/j.clay.2008.03.002Search in Google Scholar

34. Fukunaga, S., et al., Investigation of Microorganisms in Bentonite Deposits. Geomicrobiology Journal2005,22 (7-8), 361-370.10.1080/01490450500248788Search in Google Scholar

35. Bengtsson, A., et al. Microbial sulphide-producing activity in MX-80 bentonite at 1750 and 2000 kg m−3 wet density; SKB Technical Report R-15-05; 2015.Search in Google Scholar

36. Masurat, P., et al., Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Applied Clay Science2010,47 (1-2), 58-64.10.1016/j.clay.2009.01.004Search in Google Scholar

37. Stroes-Gascoyne, S., Microbial occurrence in bentonite-based buffer, backfill and sealing materials from large-scale experiments at AECL‘s Underground Research Laboratory. Applied Clay Science2010,47 (1-2), 36-42.10.1016/j.clay.2008.07.022Search in Google Scholar

38. Hajj, H. E., et al., Microbial corrosion of P235GH steel under geological conditions. Physics and Chemistry of the Earth, Parts A/B/C2010,35 (6-8), 248-253.10.1016/j.pce.2010.04.007Search in Google Scholar

39. Lovecký, M. Ukládací obalový soubor pro hlubinné úložiště. Výpočet stínění pro palivo Gd-2M.; Škoda JS Ae 15516; 2014.Search in Google Scholar

40. Brown, A. R., et al., The impact of gamma radiation on sediment microbial processes. Appl Environ Microbiol2015,81 (12), 4014-25.10.1128/AEM.00590-15Search in Google Scholar

41. Bruhn, D. F., et al., Microbial biofilm growth on irradiated, spent nuclear fuel cladding. Journal of Nuclear Materials2009,384 (2), 140-145.10.1016/j.jnucmat.2008.11.008Search in Google Scholar

42. Battista, J. R., et al., Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends in Microbiology1999,7 (9), 362-365.10.1016/S0966-842X(99)01566-8Search in Google Scholar

43. Lopez-Fernandez, M., et al., Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes. Microbial Ecology2015,70 (4), 922-935.10.1007/s00248-015-0630-726024740Search in Google Scholar

44. Stroes-Gascoyne, S., et al., Microbial Community Analysis of Opalinus Clay Drill Core Samples from the Mont Terri Underground Research Laboratory, Switzerland. Geomicrobiology Journal2007,24 (1), 1-17.10.1080/01490450601134275Search in Google Scholar

45. Stroes-Gascoyne, S.; Gascoyne, M., The Introduction of Microbial Nutrients into A Nuclear Waste Disposal Vault during Excavation and Operation. Environmental Science and Technology1998,32 (3), 317-326.10.1021/es970496tSearch in Google Scholar

46. Stoulil, J., et al., Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment. Journal of Nuclear Materials2013,443 (1-3), 20-25.10.1016/j.jnucmat.2013.06.031Search in Google Scholar

47. Hallbeck, L.; Pedersen, K., Culture-dependent comparison of microbial diversity in deep granitic groundwater from two sites considered for a Swedish final repository of spent nuclear fuel. FEMS Microbiol Ecol2012,81 (1), 66-77.10.1111/j.1574-6941.2011.01281.x22188407Search in Google Scholar

48. Yang, C., et al., Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository. Journal of Contaminant Hydrology2007,93 (1-4), 130-148.10.1016/j.jconhyd.2007.01.00817328991Search in Google Scholar

49. Choung, S., et al., Biogeochemical changes at early stage after the closure of radioactive waste geological repository in South Korea. Annals of Nuclear Energy2014,71, 6-10.10.1016/j.anucene.2014.03.021Search in Google Scholar

50. King, F. A review of the properties of pyrite and the implications for corrosion of the copper canister; SKB Technical Report TR-13-19; 2013.Search in Google Scholar

51. Persson, J., et al. Microbial incidence on copper and titanium embedded in compacted bentonite clay; SKB Technical Report R-11-22; 2011.Search in Google Scholar

52. King, F. Stress corrosion cracking of copper canisters; SKB Technical Report TR-10-04; 2010.Search in Google Scholar

53. Turnbull, A. A Review of the Possible Effects of Hydrogen on Lifetime of Carbon Steel Nuclear Waste Canisters; Nagra Technical Report 09-04; 2009.Search in Google Scholar

54. Esnault, L., et al., Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers. Physics and Chemistry of the Earth, Parts A/B/C2011,36 (17-18), 1624-1629.10.1016/j.pce.2011.10.018Search in Google Scholar

55. Libert, M., et al., Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes. Bioelectrochemistry2014,97, 162-8.10.1016/j.bioelechem.2013.10.00124177136Search in Google Scholar

56. Moreira, R., et al., Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations. Bioelectrochemistry2014,97, 69-75.10.1016/j.bioelechem.2013.10.00324177135Search in Google Scholar

57. Amend, J. P.; Shock, E. L., Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev.2001,25 (2), 175–243.Search in Google Scholar

58. Libert, M., et al., Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories. Physics and Chemistry of the Earth, Parts A/B/C2011,36 (17-18), 1616-1623.10.1016/j.pce.2011.10.010Search in Google Scholar

59. Pitonzo, B. J., et al., Microbiologically Influenced Corrosion Capability of Bacteria Isolated from Yucca Mountain. Corrosion2004,60 (1), 64-74.10.5006/1.3299233Search in Google Scholar

60. Kosec, T., et al., Post examination of copper ER sensors exposed to bentonite. Journal of Nuclear Materials2015,459, 306-312.10.1016/j.jnucmat.2015.01.058Search in Google Scholar

61. Rosborg, B., et al., Corrosion rate of pure copper in an oxic bentonite/saline groundwater environment. Corrosion Engineering, Science and Technology2011,46 (2), 148-152.10.1179/1743278210Y.0000000015Search in Google Scholar

62. Bairi, L. R., et al., Microbially induced corrosion of D9 stainless steel–zirconium metal waste form alloy under simulated geological repository environment. Corrosion Science2012,61, 19-27.10.1016/j.corsci.2012.04.019Search in Google Scholar

63. Karimi, S.; Alfantazi, A. M., Electrochemical Corrosion Behavior of Orthopedic Biomaterials in Presence of Human Serum Albumin. Journal of the Electrochemical Society2013,160 (6), C206-C214.10.1149/2.052306jesSearch in Google Scholar

64. Xu, Z., et al., Monitoring bacterial-demineralization of human dentine by electrochemical impedance spectroscopy. J Dent2010,38 (2), 138-48.10.1016/j.jdent.2009.09.013Search in Google Scholar

65. Beese-Vasbender, P. F., et al., Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta2015,167, 321-329.10.1016/j.electacta.2015.03.184Search in Google Scholar

66. Castaneda, H.; Benetton, X. D., SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corrosion Science2008,50 (4), 1169-1183.10.1016/j.corsci.2007.11.032Search in Google Scholar

67. Kuş, E., et al., The effect of different exposure conditions on the biofilm/copper interface. Corrosion Science2007,49 (8), 3421-3427.10.1016/j.corsci.2007.03.019Search in Google Scholar

68. Webster, B. J., et al., Microbiologically Influenced Corrosion of Copper in Potable Water Systems—pH Effects. Corrosion2000,56 (9), 942-950.10.5006/1.3280598Search in Google Scholar

69. Liu, J., et al., The corrosion behavior of 70/30 copperzinc alloy under the biofilm of sulfate-reducing bacteria. Materials and Corrosion2001,52, 833-837.10.1002/1521-4176(200111)52:11<833::AID-MACO833>3.0.CO;2-9Search in Google Scholar

70. Chang, X., et al., Study of Fe3Al Corrosion Behavior in Simulating Marine Biofilm Environment. Materials and Manufacturing Processes2010,25 (5), 302-306.10.1080/10426911003747790Search in Google Scholar

71. Jayaraman, A., et al., Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Applied Microbiology Biotechnology1999,52, 787±790.10.1007/s002530051592Search in Google Scholar

72. Zuo, R., et al., The importance of live biofilms in corrosion protection. Corrosion Science2005,47 (2), 279-287.10.1016/j.corsci.2004.09.006Search in Google Scholar

73. Patel, C., et al., Combined spectrophotometric electrochemical impedance imaging system for biofilm research. Journal of the Association for Laboratory Automation2005,10 (1), 16-23.10.1016/j.jala.2004.08.013Search in Google Scholar

74. Kim, T., et al., Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res2011,45 (15), 4615-22.10.1016/j.watres.2011.06.01021762943Search in Google Scholar

75. Sridharan, D., et al., Redox behavior of biofilm on glassy carbon electrode. Bioelectrochemistry2011,82 (2), 135-9.10.1016/j.bioelechem.2011.06.00621784716Search in Google Scholar

76. Estrada-Leypon, O., et al., Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy. Bioelectrochemistry2015,105, 56-64.10.1016/j.bioelechem.2015.05.00626004850Search in Google Scholar

77. Goncalves, J. J.; Govind, R., Rapid evaluation of biofilm attachment promoters and biofilm growth orientation using a mini-impedimetric device. Sensors and Actuators B: Chemical2009,143 (1), 341-348.10.1016/j.snb.2009.07.036Search in Google Scholar

78. Muñoz-Berbel, X., et al., On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network. Sensors and Actuators B: Chemical2006,118 (1-2), 129-134.10.1016/j.snb.2006.04.070Search in Google Scholar

79. Paredes, J., et al., Comparison of real time impedance monitoring of bacterial biofilm cultures in different experimental setups mimicking real field environments. Sensors and Actuators B: Chemical2014,195, 667-676.10.1016/j.snb.2014.01.098Search in Google Scholar

80. Paredes, J., et al., Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosens Bioelectron2012,38 (1), 226-32.10.1016/j.bios.2012.05.02722705402Search in Google Scholar

81. Paredes, J., et al., Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sensors and Actuators B: Chemical2013,178, 663-670.10.1016/j.snb.2013.01.027Search in Google Scholar

82. Zheng, L. Y., et al., Electrochemical measurements of biofilm development using polypyrrole enhanced flexible sensors. Sensors and Actuators B: Chemical2013,182, 725-732.10.1016/j.snb.2013.03.097Search in Google Scholar

83. Ben-Yoav, H., et al., An electrochemical impedance model for integrated bacterial biofilms. Electrochimica Acta2011,56 (23), 7780-7786.10.1016/j.electacta.2010.12.025Search in Google Scholar

84. Wang, W., et al., Heterogeneous electrochemical characteristics of biofilm/metal interface and local electrochemical techniques used for this purpose. Materials and Corrosion2009,60 (12), 957-962.10.1002/maco.200905227Search in Google Scholar

85. Stoulil, J., et al., Corrosion resistance of new powder metallurgy boron-containing stainless steel in the nuclear repository environment. Materials and Corrosion2015,66 (4), 342-346.10.1002/maco.201307468Search in Google Scholar

86. Smart, N. R., et al. Galvanic corrosion of copper-cast iron couples; SKB Technical Report TR-05-06; 2005.Search in Google Scholar

87. Taxén, C. Possible effects of external electrical fields on the corrosion of copper in bentonite; SKB Technical Report P-11-43; 2011.Search in Google Scholar

88. Wang, W., et al., Electrochemical techniques used in MIC studies. Materials and Corrosion2006,57 (10), 800-804.10.1002/maco.200503966Search in Google Scholar

89. Xie, X. H., et al., EQCM and EIS Study of the Effect of Potential of Zero Charge on Escherichia Coli Biofilm Development. International Journal of Electrochemical Science2010,5, 1018 - 1025.Search in Google Scholar

90. Dheilly, A., et al., Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl Microbiol Biotechnol2008,79 (1), 157-64.10.1007/s00253-008-1404-718330564Search in Google Scholar

91. Franklin, M. J., et al., Effect of Electrochemical Impedance Spectroscopy on Microbial Biofilm Cell Numbers, Viability, and Activity. Corrosion1991,47 (7), 519-522.10.5006/1.3585287Search in Google Scholar

92. Muñoz-Berbel, X., et al., Impedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages. Electrochimica Acta2008,53 (19), 5739-5744.10.1016/j.electacta.2008.03.050Search in Google Scholar

93. Zuo, R.; Wood, T. K., Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Appl Microbiol Biotechnol2004,65 (6), 747-53.10.1007/s00253-004-1651-115278311Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo