Accesso libero

Parameters influencing the low-cycle fatigue life of materials in pressure water reactor nuclear power plants / Parametry ovlivòující únavové chování materiálù pro tlakovodní jaderné reaktory v režimu nízkocyklové únavy

   | 18 nov 2015
INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Yao, J.; Munse, W. Low-cycle Fatigue of Metals. Literature Review; Defense Technical Information Center, 1961.Search in Google Scholar

2. Deardorf, K. K. C. J., Fujikawa A.F. A survey of current US nuclear plant fatigue issues. 3rd International Conference on Fatigue of Reactor Componentss. 2004.Search in Google Scholar

3. Materials Reliability Program: Operating Experience Regarding Thermal Fatigue of Piping Connected To PWR Reactor Coolant Systems (MRP-85).Search in Google Scholar

4. Ehrnsten, U.; Ivanchenko, M.; Nevdacha, N.; Yagozinskyy, Y.; Toivonen, A.; Hänninen, H. Dynamic Strain Ageing of Deformed Nitrogen-alloyed AISI 316 Stainless Steels. 3rd International Conference on Fatigue of Reactor Conference. 2004.Search in Google Scholar

5. Baldwin, E.; Sokol, G.; Coffin, L. Cyclic Strain Fatigue on AISI Type 347 Stainless Steel. Proceedings ASTM. 1957.Search in Google Scholar

6. Coffin, L.; Read, J. A Steel of the Strain Cycling and Fatigue Behavior of a Cold-Worked Metal. International Conference on Fatigue. 1957.Search in Google Scholar

7. Suhr, R. The effect of surface fi nish on high cycle fatigue of a low alloy steel. EGF1. 2013.Search in Google Scholar

8. Hanley, B. C.; Dolant, T. J. Metals Engineering - Design; Soc. Mech. Engrs., 1953.Search in Google Scholar

9. Narayanan, R.; Kalyanaraman, V.; Sathakumar, A.; Seetharaman, S.; Satish Kumar, S.; Arul Jayachandran, S.; Senthil, R. Teaching Material on Structural Steel Design for Civil/ Structural Engineering; 2001.Search in Google Scholar

10. Coffin, L. The Problem of Thermal Stress Fatigue in Austenitic Steels at Elevated Temperatures. Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures. 1954.Search in Google Scholar

11. Iida, K.; Bannai, T.; Higuchi, M.; Tsutsumi, K.; Iida, K.; Bannai, T.; Sakaguchi, K. Comparison of Japanese MITI Guideline and Other Methods for Evaluation of Environmental Fatigue Life Reduction. Pressure Vessel and Piping Codes and Standards. 2001; pp 73-81.Search in Google Scholar

12. Mehta, H. S.; Gosselin, S. R. An Environmental Factor Approach to Account for Reactor Water Effects in Light Water Reactor Pressure Vessel and Piping Fatigue Evaluations. Fatigue and Fracture. 1996; pp 171-185.Search in Google Scholar

13. Chopra, O.; Shack, W. J. Evaluation of Effects of LWR Coolant Environments on Fatigue Life of Carbon and Low-Alloy Steels. Evaluation of Effects of LWR Coolant Environments on Fatigue Life of Carbon and Low-Alloy Steels, in Effects of the Environment on the Initiation of Crack Growth, ASTM STP 1298. 1997; pp 247-266.10.2172/505402Search in Google Scholar

14. Chopra, O. K.; Shack, W. J.; Nuclear Engineering and Design 1998,184, 49-76.10.1016/S0029-5493(97)00368-3Search in Google Scholar

15. Chopra, O.; Shack, W. J. Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low- Alloy Steels; 1998.10.2172/573404Search in Google Scholar

16. Chopra, O.; Shack, W. Journal of Pressure Vessel Technology 1999, 121, 49-60.Search in Google Scholar

17. Chopra, O.; Shack, W. Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels; 2001.Search in Google Scholar

18. Fujiwara, M.; Endo, T.; Kanasaki, H. Strain Rate Effects on the Low-Cycle Fatigue Strength of 304 Stainless Steel in High-Temperature Water Environment; Fatigue Life: Analysis and Prediction. Proc. Intl. Conf. and Exposition on Fatigue, Corrosion Cracking, Fracture Mechanics, and Failure Analysis. 1986; pp 309-313.Search in Google Scholar

19. Higuchi, M.; Iida, K. Reduction in Low-Cycle Fatigue Life of Austenitic Stainless Steels in High-Temperature Water. Pressure Vessel and Piping Codes and Standards. 1997; pp 79-86.Search in Google Scholar

20. Kanasaki, H.; Umehara, R.; Mizuta, H.; Suyama, T. Effect of Strain Rate and Temperature Change on the Fatigue Life of Stainless Steel in PWR Primary Water. Trans. 14th Intl. Conf. on Structural Mechanics in Reactor Technology (SMiRT 14). 1997; pp 485-493.Search in Google Scholar

21. Chopra, O.; Muscara, J. Effects of Light Water Reactor Coolant Environments on Fatigue Crack Initiation in Piping and Pressure Vessel Steels. Proc. 8th Intl. Conference on Nuclear Engineering, 2.08 LWR Materials Issue. 2000.Search in Google Scholar

22. Tsutsumi, K.; Dodo, T.; Kanasaki, H.; Nomoto, S.; Minami, Y.; Nakamura, T. Fatigue Behavior of Stainless Steel under Conditions of Changing Strain Rate in PWR Primary Water. Pressure Vessel and Piping Codes and Standards. 2001; pp 135-141.Search in Google Scholar

23. Benham, P. Metallurgical Reviews 1958, 3, 203-234.10.1179/mtlr.1958.3.1.203Search in Google Scholar

24. Johansson, A. Fatigue of steels at constant strain amplitude and elevated temperature. Colloquium on Fatigue. 1956; pp 112-122.10.1007/978-3-642-99854-6_12Search in Google Scholar

25. Solin, J.; Karjalainen-Roikonen, P.; Arilahti, E.; Moilanen, P. Low cycle behaivor of 316 NG alloy in PWR environment. 2004.Search in Google Scholar

26. Gangloff, R. P.; Ives, M. B. Environment Induced Cracking of Metals.1990.Search in Google Scholar

27. Chopra, O.; Shack, W. J. Review of the Margins for ASME Code Fatigue Design Curve - Effects of Surface Roughness and Material Variability; 2003.10.2172/925073Search in Google Scholar

28. Higuchi, M.; Iida, K. Nuclear Engineering and Design 1991, 129, 293-306.Search in Google Scholar

29. Katada, Y.; Nagata, N.; Sato, S. ISIJ Intl. 1993, 31, 877-883.10.2355/isijinternational.33.877Search in Google Scholar

30. Nakao, G.; Kanasaki, H.; Higuchi, M.; Iida, K.; Asada, Y. Effects of temperature and dissolved oxygen content on fatigue life of carbon and low alloy steels in LWR water environment; 1995.Search in Google Scholar

31. Wire, G.; Li, Y. Initiation of environmentally-assisted cracking in low-alloy steels; 1996.Search in Google Scholar

32. Kanasaki, H.; Umehara, R.; Mizuta, H.; Suyama, T. Fatigue Lives of Stainless Steels in PWR Primary Water. Trans. 14th Intl. Conf. on Structural Mechanics in Reactor Technology (SMiRT 14). 1997; pp 473-483.Search in Google Scholar

33. Tsutsumi, K.; Kanasaki, H.; Umakoshi, T.; Nakamura, T.; Urata, S.; Mizuta, H.; Nomoto, S.; Fatigue Life Reduction in PWR Water Environment for Stainless Steels. Assessment Methodologies for Preventing Failure: Service Experience and Environmental Considerations. 2000; pp 23-24.Search in Google Scholar

34. Higuchi, M. Development of Evaluation Method of Fatigue Damage on Operating Plant Components in Considering Environmental Effect of LWR Coolant. 3rd International Conference on Fatigue of Reactor Components. 2004.10.1115/PVP2004-2682Search in Google Scholar

eISSN:
1804-1213
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass