Accesso libero

A 10 GS/s time-interleaved ADC in 0.25 micrometer CMOS technology

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] C. A. Schmidt, J. E. Cousseau, J. L. Figueroa, B. T. Reyes and M. R. Hueda, “Efficient Estimation and Correction of Mismatch Errors Time-Interleaved ADCs”, IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 2, 2016, pp. 243–254.10.1109/TIM.2015.2490378Search in Google Scholar

[2] D. R. Oh, J. I. Kim, M. J. Seo, J. G. Kim and S. T. Ryu, “A 6-bit 10 GS/s 63 mW 4x TI Time-Domain Interpolating Flash ADC 65 nm CMOS”, European Solid-State Circuits Conference (ESSCIRC), 2015, pp. 323–326.Search in Google Scholar

[3] Y. C. Chen, J. S. Lai and Z. M. Lin, “A 6Bit 3GS/s Two-Channel Time Interleaved Interpolating Flash ADC”, Electron Devices and Solid-State Circuits (EDSSC), 2013, pp. 1–4.Search in Google Scholar

[4] X. Yang and J. Liu, “A 10GS/s 6 b Time-Interleaved Partially Active Flash ADC”, IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 61, no. 8, 2014, pp. 2272–2280.10.1109/TCSI.2014.2333679Search in Google Scholar

[5] M. Chu, P. Jacob, J. W. Kim, M. R. Leroy, R. P. Kraft and J. F. Mcdonald, “A 40 Gs/s time interleaved ADC using SiGe BiC-MOS technology”, IEEE Journal of Solid-State Circuits, vol. 45, no. 2, 2010, pp. 380-390.10.1109/JSSC.2009.2039375Search in Google Scholar

[6] B. T. Reyes, G. Paulina, R. Sanchez and P. S. Mandolesi and M. R. Hueda, “A 2GS/s 6-bit CMOS time-interleaved ADC for analysis of mixed-signal calibration techniques”, Analog Integrated Circuits and Signal Processing, vol. 85, no. 1, 2015, pp. 3-16.10.1007/s10470-015-0578-zSearch in Google Scholar

[7] G. Tretter, M. Khafaji, D. Fritsche, C. Carta and F. Ellinger, “A 24 GS/s single-core flash ADC with 3 bit resolution 28 nm low-power digital CMOS”, Radio Frequency Integrated Circuits Symposium (RFIC), 2015, pp. 347–350.10.1109/RFIC.2015.7337776Search in Google Scholar

[8] H. Chung, Z. T. Deniz, A. Rylyakov, J. Bulzacchelli, D. Friedman and G. Y. Wei, “A 7. 5 GS/s flash ADC and a 10. 24 GS/s time-interleaved ADC for backplane receivers 65 nm CMOS”, Analog Integrated Circuits and Signal Processing, vol. 85, no. 2, 2015, pp. 299-310.10.1007/s10470-015-0624-xSearch in Google Scholar

[9] S. M. Louwsma, A. J. M. Van Tuijl, M. Vertregt and B. Nauta, “A 1.35GS/s, 10 b, 175 mW Time-Interleaved AD Converter 0.13 μm CMOS”, IEEE Journal of Solid-State Circuits, vol. 43, no. 4, 2008, pp. 778–786.10.1109/JSSC.2008.917427Search in Google Scholar

[10] S. Louwsma, E. Van Tuijl and B. Nauta,, Time-Interleaved Analog-to-Digital Converters, Springer Science & Business Media, 2010.10.1007/978-90-481-9716-3Search in Google Scholar

[11] D. Fu, K. C. Dyer, S. H. Lewis and P. J. Hurst, “A Digital Background Calibration Technique for Time-Interleaved Analog-to-Digital Converters”, IEEE Journal of Solid-State Circuits, vol. 33, no. 12, 1998, pp. 1904–1911.10.1109/4.735530Search in Google Scholar

[12] C. Vogel and H. Johansson, “Time-Interleaved Analog-to-Digital Converters”, Status and future directions”, International Symposium on Circuits and Systems (ISCAS), 2006, pp. 3386–3389.Search in Google Scholar

[13] B. Razavi, “Problem of Timing Mismatch Interleaved ADCs”, Custom Integrated Circuits Conference (CICC), 2012, pp. 1–8.10.1109/CICC.2012.6330655Search in Google Scholar

[14] K. N. Madsen, T. D. Gathman, S. Oh, T. C. Daneshgar, J. C. Li and J. F. Buckwalter, “A High-Linearity, 30GS/s Track-and-Hold Amplifier and Time Interleaved Sample-and-Hold an InP-on-CMOS Process”, IEEE Journal of Solid-State Circuits, vol. 11, no. 50, 2015, pp. 2692–2702.10.1109/JSSC.2015.2472642Search in Google Scholar

[15] T. D. Gathman, K. N. Madsen, J. C. Li, T. C. Oh and J. F. Buckwalter, “A 30GS/s Double-Switching Track-and-Hold Amplifier with 19 dBm IIP3 an InP BiCMOS Technology”, Solid-State Circuits Conference Digest of Technical Papers (ISSCC), (30.8), 2014, pp. 1–3.10.1109/ISSCC.2014.6757530Search in Google Scholar

[16] F. Jiang, D. Wu, L. Zhou, J. Wu, Z. Jin and X. Liu, “A 4 GS/s 8 bit Two-Channel Time-Interleaved Folding and Interpolating ADC”, Science China Information Sciences, vol. 57, no. 1, 2014, pp. 1–6.10.1007/s11432-013-5019-ySearch in Google Scholar

[17] P. J. Harpe, B. Busze, K. Philips and H. De-Groot, “A 0.47–1.6mW 5 bit 0.5–1GS/s Time-Interleaved SAR ADC for Low-Power UWB Radios”, IEEE Journal of Solid-State Circuits, vol. 47, no. 7, 2012, pp. 1594-1602.10.1109/JSSC.2012.2191042Search in Google Scholar

[18] S. Kundu, E. Alpman, J. H. L. Lu, H. Lakdawala, J. Paramesh, B. Jung and E. Gordon, “A 1.2V 2.64GS/s 8 bit 39mW Skew-Tolerant Time-Interleaved SAR ADC 40 nm Digital LP CMOS for 60 GHz WLAN”, IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 62, no. 8, 2015, pp. 1929–1939.10.1109/TCSI.2015.2452372Search in Google Scholar

[19] S. S. Wong, U. F. Chio, Y. Zhu, S. W. Sin, U. Seng-Pan and R. P. Martins, “A 2.3 mW 10 bit 170 MS/s Two-Step Binary-Search Assisted Time-Interleaved SAR ADC”, IEEE journal of solid-state circuits, vol. 48, no. 8, 2013, pp. 1783–1794.10.1109/JSSC.2013.2258832Search in Google Scholar

[20] B. Setterberg et al, “A 14b 2.5 GS/s 8-Way-Interleaved Pipe-lined ADC with Background Calibration and Digital Dynamic Linearity Correction”, Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013, pp. 466–467.10.1109/ISSCC.2013.6487817Search in Google Scholar

[21] A. Spagnolo, B. Verbruggen, S. DAamico and P. Wambacq, “A 6.2 mW 7b 3.5 GS/s Time Interleaved 2-Stage Pipelined ADC 440 nm CMOS”, European Solid State Circuits Conference (ES-SCIRC), 2014, pp. 75–78.10.1109/ESSCIRC.2014.6942025Search in Google Scholar

[22] Y. Duan and E.: Alon, “A 12.8 GS/s Time Interleaved ADC With 25 GHz Effective Resolution Bandwidth and 4.6 ENOB”, IEEE Journal of Solid State Circuits, vol. 49, no. 8, 2010, pp. 1725–1737.10.1109/JSSC.2014.2314448Search in Google Scholar

[23] M. Li, X. El-Chammas, S. Kimura, K. Maclean, J. Hu, M. Weaver, M. Kaylor, S. Gindlesperger, R. Payne, C. K. Sestok and W. Bright, “A 12 Bit 1.6 GS/s BiCMOS 2 × 2 Hierachical Time-Interleaved Pipeline ADC”, IEEE Journal of Solid State Circuits, vol. 49, no. 9, 2014, pp. 1877–1883.10.1109/JSSC.2014.2315624Search in Google Scholar

[24] J. Lee and Y. K.: Chen, “A 50 GS/s 5-b ADC 0.18 μm SiGe BiCMOS”, IEEE MTT-S International Microwave Symposium Digest, 2010, pp. 900–903.10.1109/MWSYM.2010.5517519Search in Google Scholar

[25] S. Ma, H. Yu and J. Ren, “A 32.5 GS/s Sampler with Time-Interleaved Track-and-Hold Amplifier 65 nm CMOS”, IEEE Transactions on Microwave theory and Techniques, vol. 62, no. 12, 2014, pp. 3500–3510.10.1109/TMTT.2014.2366121Search in Google Scholar

[26] P. Ritter, S. L. Tual, B. Allard and M. Moller, “Design Considerations for a 6 Bit 20 GS/s SiGe BiCMOS Flash ADC Without Track-and-Hold”, IEEE Journal of Solid State Circuits, vol. 49, no. 9, 2014, pp. 1886–1893.10.1109/JSSC.2014.2316231Search in Google Scholar

[27] Y. H. Gao, Y. L. Wang and Z. P. Zhang, “A Multi-Phase Clock Design for Super High-Speed Time Interleaved Analog-to-Digital Converter”, International Conference on Anti-Counterfeiting, Security and Identification (ASID), 2012, pp. 1–4.10.1109/ICASID.2012.6325291Search in Google Scholar

[28] C. J. B. Fayomi, G. W. Roberts and M. Sawan, “Low-Voltage CMOS analog Bootstrapped Switch for Sample-and-Hold Circuit”, Design and chip characterization”, International Symposium on Circuits and Systems (ISCAS), 2005, pp. 2200–2203.Search in Google Scholar

[29] M. Azarmehr, R. Ahmadi and M. Rashidzadeh, “High-Speed CMOS Track-and-Hold with an Offset Cancellation Replica Circuit”, International Symposium on Circuits and Systems (IS-CAS), 2010, pp. 4297–4300.10.1109/ISCAS.2010.5537545Search in Google Scholar

[30] F. Moloberti, Data Converters, Springer, The Netherlands, 2007.Search in Google Scholar

[31] W. S. Chu and K. W. Current, “A CMOS Voltage Comparator with Rail-to-Rail Input-Range”, Analog integrated circuits and signal processing, vol. 19, no. 2, 1999, pp. 145–149.10.1023/A:1008349731160Search in Google Scholar

[32] O. Aytar, A. Tangel and K. Sahin, “A 5-bit 5 Gs/s Flash ADC using Multiplexer-Based Decoder”, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 21(Sup. 1), 2013, pp. 1972–1982.10.3906/elk-1201-114Search in Google Scholar

[33] O. Aytar, “Design of A 5 Bit Fully Parallel Analog to Digital Converter Using Common Gate Differrential Mos Pair-Based Comparator”, Journal of Electrical Engineering, vol. 66, no. 5, 2015, pp. 250–256.10.2478/jee-2015-0041Search in Google Scholar

[34] O. Aytar and A. Tangel, “Employing Threshold Inverter Quantization (TIQ) Technique Designing 9 Bit Folding and Interpolation CMOS Analog-to-Digital Converters (ADC)”, Scientific Research and Essays, vol. 6, no. 2, 2011, pp. 351–362.Search in Google Scholar

[35] A. Tanabe and et al, “0.18-/spl mu/m CMOS 10-Gb/s Multiplexer/Demultiplexer ICs using Current Mode Logic with Tolerance to Threshold Voltage Fluctuation”, IEEE Journal of Solid-State Circuits, vol. 36, no. 6, 2001, pp. 988–996.10.1109/4.924861Search in Google Scholar

[36] M. Meghelli, “132 Gb/s 4:1 multiplexer 0.13-/spl mu/m SiGe Bipolar Technology”, IEEE Journal of Solid-State Circuits, vol. 39, no. 12, 2004, pp. 2403–2407.10.1109/JSSC.2004.835641Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other