INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] NORTHROP, R. B.: Analog Electronics Circuits, Addison-Wesley, Reading, MA, 1990.Search in Google Scholar

[2] HEAVEY, P.—WHITNEY, C.: RMS Measuring Principles in the Application of Protective Relaying and Metering, in Proc. 57th Annu. Conf. Protective Relay Eng., 2004, pp. 469–489.10.1109/CPRE.2004.238610Search in Google Scholar

[3] POGLIANA, U.: Precision Measurement of ac Voltage Below 20 Hz at IEN, IEEE Trans. Instrum. Meas. 46 No. 2 (1997), 369–372.10.1109/19.571858Search in Google Scholar

[4] GERMER, H.: High-Precision AC Measurements using the Monte-Carlo Method, IEEE Trans. Instrum. Meas. 50 No. 2 (2001), 457–460.10.1109/19.918165Search in Google Scholar

[5] YOON, W. K.—DEVENEY, M. J.: Power Measurement using the Wavelet Transform, IEEE Trans. Instrum. Meas. 47 No. 5 (1998), 1205–1210.10.1109/19.746584Search in Google Scholar

[6] NOVOTNY, M.—SEDLACEK, M.: RMS Value Measurement based on Classical and Modified Digital Signal Processing Algorithms, Measurement 41 No. 3 (2008), 236–250.Search in Google Scholar

[7] True RMS’ detector, National Semiconductor Application Note AN008474, 2002.Search in Google Scholar

[8] DSCA33 ISOLATED True RMS Input Module, 2001, AN101 Dataforth Corporation, USA.Search in Google Scholar

[9] FREY, D. R.: Exact Analysis of Implicit RMS Converters, Electronics Letters 40 No. 5 (2004), 283–284.10.1049/el:20040204Search in Google Scholar

[10] ABULMA’ATTI, M. T.: Improved Analysis of Implicit RMS Detectors, IEEE Trans. Instrum. Meas. 58 No.3 (2009), 502-505.10.1109/TIM.2008.2005262Search in Google Scholar

[11] High Precision, Wide-Band RMS-to-DC Converter, Analog Devices Application Note AD637, 2004.Search in Google Scholar

[12] Precision Wide Bandwidth, RMS-to-DC Converter, Linear Technology Application Note LTC1968, 2008.Search in Google Scholar

[13] MULDER, J.—SERDIJN, W. A.—WOERD, A. C.—ROERMUND, A. H. M.: Dynamic Translinear RMS-DC Converter, Electron Lett. 32 (1996), 2067–2068.10.1049/el:19961365Search in Google Scholar

[14] MULDER, J.—SERDIJN, W. A.—ROERMUND, A. H. M.: An RMS-DC Converter Base don the Dynamic Translinear Principle, IEEE Solid-State Circuits 32 (1997), 1146–1150.10.1109/4.597308Search in Google Scholar

[15] SURAKAMPONTRON, W.—KUMWACHARA, K.: A Dual Translinear-Based RMS-to-DC Converter, IEEE Trans. Instrum. Meas. 47 (1999), 456–464.Search in Google Scholar

[16] WASSENEAAR, R. F.—SEEVINCK, E.—van LEEUWEN, M. G.—SPEELMAN, C. J.—HOLLE, E.: New Techniques for High-Frequency RMS-to-DC Conversion Based on a Multifunctional V-to-I Convertor, IEEE Jour. Sol. Sta. Circ. 23 No. 3 (1998), 802–815.Search in Google Scholar

[17] MILANOVIĆ, V.—GAITAN, M.—BOWEN, E. D.—TEA, N. H.—ZAGHLOU, M. E.: Thermoelectric Power Sensors for Microwave Applications by Commercial CMOS Fabrication, IEEE Elec. Dev. Lett. 18 No. 9 (1997), 450–452.10.1109/55.622527Search in Google Scholar

[18] SEDRA, A. S.—SMITH, K. C.: A Second-Generation Current Conveyor and its Applications, IEEE Trans. Circuit Theory CT-17 No. 1 (1970), 132–134.10.1109/TCT.1970.1083067Search in Google Scholar

[19] YUCE, E.—MINAEI, S.—TOKAT, S.: Root-Mean-Square Measurement of Distinct Voltage Signals, IEEE Trans. Instrum. Meas. 56 No. 6 (2007), 2782–2787.10.1109/TIM.2007.908153Search in Google Scholar

[20] FABRE, A.—SAAID, O.—WIEST, F.—BOUCHERON, C.: Current Controllable Bandpass Filter based on Translinear Conveyors, Electron. Lett. 31 (1995), 1727–1728.10.1049/el:19951225Search in Google Scholar

[21] PAL, K.: Modified Current Conveyors and their Applications, Microelectronics Journal 20 (1989), 37–40.10.1016/0026-2692(89)90076-1Search in Google Scholar

[22] SOLIMAN, A. M.: Modified Current Conveyor Filters: Classification and Review, Microelectronics Journal 29 (1998), 133–149.10.1016/S0026-2692(97)00080-3Search in Google Scholar

[23] TANGSRIRAT, W.—SURAKAMPONTORN, W.: High Output Impendance Current-Mode Universal Filter Employing Dual-Output Current-Controlled Conveyors and Grounded Capacitors, AEU-International Journal of Electronics and Communications 61 (2007), 127–131.10.1016/j.aeue.2006.05.003Search in Google Scholar

[24] FABRE, A.—SAAID, O.—BARTHELEMY, H.: On the Frequency Limitations of the Circuits based on the Second Generation Current Conveyors, Analog Integr. Circuits Signal Process. 7 No. 2 (1995), 113–129.10.1007/BF01239166Search in Google Scholar

[25] PETROVIĆ, P.: Root-Mean-Square Measurement of Periodic, Band-Limited Signals, in Proc. of 2012 IEEE International Conference on Instrumentation and Measurement Technology (I2MTC), 2012, pp. 323–327.10.1109/I2MTC.2012.6229146Search in Google Scholar

[26] PETROVIC, P.—STEVANOVIC, M.: IEE Proc. Elec. Pow. Appl. 153 No. 2 (2006), 227–235.Search in Google Scholar

[27] ZHANG, T.—EISENSTADT, W. R.—FOX, R. M.—YIN, Q.: Bipolar RMS Power Detectors, IEEE Jour. Sol. Sta. Circ. 41 No. 9 (2006), 2188–2192.10.1109/JSSC.2006.880592Search in Google Scholar

[28] RUMBERG, B.—GRAHAM, D. W.: A Low-Power Magnitude Detector for Analysis of Transient-Rich Signals, IEEE Jour. Sol. Sta. Circ. 47 No. 3 (2012), 676–685.10.1109/JSSC.2011.2179452Search in Google Scholar

[29] ABDUL-KARIM, M. A. H.—TAHA, S. M. R.—OMRAN, S. S.: Microprocessor-Based Implicit RMS Meter, International Journal of Electronics 62 No. 6 (1987), 953–959.10.1080/00207218708921046Search in Google Scholar

[30] MINAEI, S.—SAYIN, O. K.—KUNTMAN, H.: A New CMOS Electronically Tuneable Current Conveyor and its Application to Current-Mode Filters, IEEE Trans. Circuits Syst. I 53 No. 7 (2006), 1448–1457.10.1109/TCSI.2006.875184Search in Google Scholar

[31] GUM-Guide to the Expression of Uncertainty in Measurement, ISO 1993, 1993.Search in Google Scholar

[32] PROMMEE, P.—ANGKEAW, K.—SOMDUNYAKANOK, M.—DEJHAN, K.: CMOS-based Near Zero-Offset Multiple Inputs max-min Circuits and its Applications, Analog Integr. Circuits Signal Process. 61 (2009), 93–105.10.1007/s10470-009-9281-2Search in Google Scholar

[33] ACHIGUI, H. J.—FAYOMI, C.—MASSICOTTE, D.—BOUKADOUM, M.: Low-Voltage, High-Speed CMOS Analog Latched Voltage Comparator using the Flipped Voltage Follower as Input Stage, Microelectronics Journal 42 (2011), 785–789.10.1016/j.mejo.2011.01.006Search in Google Scholar

[34] MAXIM Precision, CMOS Analog Switches, data sheet, 1994.Search in Google Scholar

[35] SinglePositive-Edge-TriggeredD-type Flip-Flop SN74LVC1G80, Texsas Instruments, data sheet, 2007.Search in Google Scholar

[36] ANNEMA, A. J.—GOKSUN, G. A.: 0.0025 mm2 Bandgap Voltage Reference for 1.1V Supply in Standard 0.16 μm CMOS, in Proceedings of 2012 IEEE International Solid-State Circuits Conference, 2012, pp. 364–366.Search in Google Scholar

[37] BANBA, H.—SHIGA, H.—UMEZAWA, A.—MIYABA, T.—TANZAWA, T.—ATSUMI, S.—AND SAKUI, K.: A CMOS bandgap Reference Circuit with sub-1V Operation, IEEE J. Solid State Circuits 34 No. 5 (1999), 670–674.10.1109/4.760378Search in Google Scholar

[38] KAEWDANG, K.—KUMWACHARA, K.—SURAKAMPONTORN, W.: A Translinear-Based True RMS-to-DC Converter using only npn BJTs, AEU-Intern. Jour. Elec. Comm. 63 No. 6 (2009)), 472–477.10.1016/j.aeue.2008.03.008Search in Google Scholar

[39] YHANG, T.—EISENSTADT, W. R.—FOX, R. M.—YIN, Q.: Bipolar RMS Power Detectors, IEEE Jour. Sol. Sta. Circ. 41 No. 9 (2006), 2188–2192.Search in Google Scholar

[40] SPENCER, R. R.: Analog Implementation of Artificial Neural Networks, in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, 1991, pp. 1271–1274.Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other