INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Lee R, Margaritis M, Channon KM, et al. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem. 2012;19:2504-20.10.2174/092986712800493057341220422489713Search in Google Scholar

2. Tousoulis D, Psarros C, Demosthenous M, et al. Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. J Am Coll Cardiol. 2014;63:2491-502.10.1016/j.jacc.2014.01.05424613322Search in Google Scholar

3. Psarros C, Lee R, Margaritis M, et al. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Nanomedicine. 2012;8 Suppl 1:S59-68.10.1016/j.nano.2012.05.00622640906Search in Google Scholar

4. Antoniades C, Antonopoulos AS, Tousoulis D, et al. Adiponectin: from obesity to cardiovascular disease. Obes Rev. 2009;10:269-79.10.1111/j.1467-789X.2009.00571.x19389061Search in Google Scholar

5. Antonopoulos AS, Lee R, Margaritis M, et al. Adiponectin as a regulator of vascular redox state: therapeutic implications. Recent Pat Cardiovasc Drug Discov. 2011;6:78-88.10.2174/15748901179593383721453253Search in Google Scholar

6. Margaritis M, Antonopoulos AS, Digby J, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127:2209-21.10.1161/CIRCULATIONAHA.112.00113323625959Search in Google Scholar

7. Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin As A Link Between Type 2 Diabetes Mellitus And Vascular NADPH-Oxidase Activity In The Human Arterial Wall: The Regulatory Role Of Perivascular Adipose Tissue. Diabetes. 2014. doi: 10.2337/db14-1011 [Epub ahead of print]10.2337/db14-101125552596Search in Google Scholar

8. Channon KM and Guzik TJ. Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol. 2002;53:515-24.Search in Google Scholar

9. Alp NJ, Mussa S, Khoo J, et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest. 2003;112:725-35.10.1172/JCI1778618219612952921Search in Google Scholar

10. Cunnington C, Van Assche T, Shirodaria C, et al. Systemic and Vascular Oxidation Limits the Efficacy of Oral Tetrahydrobiopterin Treatment in Patients With Coronary Artery Disease. Circulation. 2012;125:1356-66.10.1161/CIRCULATIONAHA.111.038919523893522315282Search in Google Scholar

11. Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109:II27-33.10.1161/01.CIR.0000129501.88485.1f15173060Search in Google Scholar

12. Antoniades C, Tousoulis D, Vasiliadou C, et al. Genetic polymorphism on endothelial nitric oxide synthase affects endothelial activation and inflammatory response during the acute phase of myocardial infarction. J Am Coll Cardiol. 2005;46:1101-9.10.1016/j.jacc.2005.05.072Search in Google Scholar

13. Antoniades C, Shirodaria C, Warrick N, et al. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation. 2006;114:1193-201.10.1161/CIRCULATIONAHA.106.612325Search in Google Scholar

14. Antoniades C, Shirodaria C, Leeson P, et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J. 2009;30:1142-50.10.1093/eurheartj/ehp061Search in Google Scholar

15. Gounari P, Tousoulis D, Antoniades C, et al. Rosuvastatin but not ezetimibe improves endothelial function in patients with heart failure, by mechanisms independent of lipid lowering. Int J Cardiol. 2010;142:87-91.10.1016/j.ijcard.2008.12.067Search in Google Scholar

16. Antoniades C, Demosthenous M, Tousoulis D, et al. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension. 2011;58:93-8.10.1161/HYPERTENSIONAHA.110.168245Search in Google Scholar

17. Ait-Oufella H, Taleb S, Mallat Z, et al. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:969-79.10.1161/ATVBAHA.110.207415Search in Google Scholar

18. Tousoulis D, Antoniades C, Stefanadis C. Assessing inflammatory status in cardiovascular disease. Heart. 2007;93:1001-7.10.1136/hrt.2006.088211Search in Google Scholar

19. Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm. 2009;80:613-33.10.1016/S0083-6729(08)00621-3Search in Google Scholar

20. Schuett H, Luchtefeld M, Grothusen C, et al. How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost. 2009;102:215-22.10.1160/TH09-05-029719652871Search in Google Scholar

21. Abeywardena MY, Leifert WR, Warnes KE, et al. Cardiovascular biology of interleukin-6. Curr Pharm Des. 2009;15:1809-21.10.2174/13816120978818629019442192Search in Google Scholar

22. Yudkin JS, Kumari M, Humphries SE, et al. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209-14.Search in Google Scholar

23. Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res. 2007;4:84-8.10.3132/dvdr.2007.025Search in Google Scholar

24. Wang Z, Castresana MR, Newman WH. Reactive oxygen and NFkappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun. 2001;285:669-74.10.1006/bbrc.2001.5232Search in Google Scholar

25. Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol. 2008;4:34-42.10.1038/ncprheum0681Search in Google Scholar

26. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479-90.10.1016/j.immuni.2005.09.015Search in Google Scholar

27. Okamura H, Tsutsui H, Kashiwamura S, et al. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol. 1998;70:281-312.10.1016/S0065-2776(08)60389-2Search in Google Scholar

28. Pizarro TT, Cominelli F. Cloning IL-1 and the birth of a new era in cytokine biology. J Immunol. 2007;178:5411-2.10.4049/jimmunol.178.9.541117442919Search in Google Scholar

29. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy--review of a new approach. Pharmacol Rev. 2003;55:241-69.10.1124/pr.55.2.412773629Search in Google Scholar

30. Han X, Kitamoto S, Wang H, et al. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice. FASEB J. 2010;24:2869-80.10.1096/fj.09-148155290928320354139Search in Google Scholar

31. Han X, Kitamoto S, Lian Q, et al. Interleukin-10 facilitates both cholesterol uptake and efflux in macrophages. J Biol Chem. 2009;284:32950-8.10.1074/jbc.M109.040899278171019776020Search in Google Scholar

32. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73:213-24.10.1189/jlb.060231312554798Search in Google Scholar

33. Blankenberg S, Tiret L, Bickel C, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation. 2002;106:24-30.10.1161/01.CIR.0000020546.30940.92Search in Google Scholar

34. Tziakas DN, Chalikias GK, Kaski JC, et al. Inflammatory and anti-inflammatory variable clusters and risk prediction in acute coronary syndrome patients: a factor analysis approach. Atherosclerosis. 2007;193:196-203.10.1016/j.atherosclerosis.2006.06.016Search in Google Scholar

35. Lin S, Lee CK, Wang YM, et al. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosens Bioelectron. 2006;22:323-7.10.1016/j.bios.2006.01.018Search in Google Scholar

36. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003;108:1930-2. 10.1161/01.CIR.0000096055.62724.C5Search in Google Scholar

37. Venugopal SK, Devaraj S, Jialal I. Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am J Pathol. 2005;166:1265-71.10.1016/S0002-9440(10)62345-0Search in Google Scholar

38. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111:1805-12.10.1172/JCI200318921Search in Google Scholar

39. Rifai N, Ridker PM. Proposed cardiovascular risk assessment algorithm using high-sensitivity C-reactive protein and lipid screening. Clin Chem. 2001;47:28-30.10.1093/clinchem/47.1.28Search in Google Scholar

40. Elkind MS. Inflammation, atherosclerosis, and stroke. Neurologist. 2006;12:140-8.10.1097/01.nrl.0000215789.70804.b016688015Search in Google Scholar

41. King VL, Thompson J, Tannock LR. Serum amyloid A in atherosclerosis. Curr Opin Lipidol. 2011;22:302-7.10.1097/MOL.0b013e3283488c3921734573Search in Google Scholar

42. Rho YH, Chung CP, Oeser A, et al. Novel cardiovascular risk factors in premature coronary atherosclerosis associated with systemic lupus erythematosus. J Rheumatol. 2008;35:1789-94.Search in Google Scholar

43. Min JH, Jain MK, Wilder C, et al. Membrane-bound plasma platelet activating factor acetylhydrolase acts on substrate in the aqueous phase. Biochemistry. 1999;38:12935-42.10.1021/bi991149u10504265Search in Google Scholar

44. Wilensky RL and Macphee CH. Lipoprotein-associated phospholipase A(2) and atherosclerosis. Curr Opin Lipidol. 2009;20:415-20.10.1097/MOL.0b013e3283307c16Search in Google Scholar

45. Anderson JL. Lipoprotein-associated phospholipase A2: an independent predictor of coronary artery disease events in primary and secondary prevention. Am J Cardiol. 2008;101:23F-33F.10.1016/j.amjcard.2008.04.015Search in Google Scholar

46. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170:191-203.10.1016/S0021-9150(03)00097-2Search in Google Scholar

47. McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14:581-6.10.1016/S0955-0674(02)00367-8Search in Google Scholar

48. Galkina E, Kadl A, Sanders J, et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med. 2006;203:1273-82.10.1084/jem.20052205212120816682495Search in Google Scholar

49. Eriksson EE, Xie X, Werr J, et al. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001;194:205-18.10.1084/jem.194.2.205219344911457895Search in Google Scholar

50. Galkina E and Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292-301.10.1161/ATVBAHA.107.14917917673705Search in Google Scholar

51. Paez A, Mendez-Cruz AR, Varela E, et al. HUVECs from newborns with a strong family history of myocardial infarction overexpress adhesion molecules and react abnormally to stimulating agents. Clin Exp Immunol. 2005;141:449-58.10.1111/j.1365-2249.2005.02858.x180947016045734Search in Google Scholar

52. Davies MJ, Gordon JL, Gearing AJ, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol. 1993;171:223-9.10.1002/path.17117103117506307Search in Google Scholar

53. Yu G, Rux AH, Ma P, et al. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood. 2005;105:3545-51.10.1182/blood-2004-07-2617189502415591119Search in Google Scholar

54. Hafezi-Moghadam A, Thomas KL, Prorock AJ, et al. L-selectin shedding regulates leukocyte recruitment. J Exp Med. 2001;193:863-72.10.1084/jem.193.7.863Search in Google Scholar

55. del Pozo MA, Pulido R, Munoz C, et al. Regulation of ICAM-3 (CD50) membrane expression on human neutrophils through a proteolytic shedding mechanism. Eur J Immunol. 1994;24:2586-94.10.1002/eji.1830241104Search in Google Scholar

56. Kostidou E, Topouridou K, Daniilidis A, et al. Oxidized laminin-1 induces increased monocyte attachment and expression of ICAM-1 in endothelial cells. Int J Exp Pathol. 2009;90:630-7.10.1111/j.1365-2613.2009.00686.xSearch in Google Scholar

57. Matheny HE, Deem TL, Cook-Mills JM. Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J Immunol. 2000;164:6550-9.10.4049/jimmunol.164.12.6550Search in Google Scholar

58. Malik I, Danesh J, Whincup P, et al. Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis. Lancet. 2001;358:971-6.10.1016/S0140-6736(01)06104-9Search in Google Scholar

59. Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multifunctional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol. 2007;27:2514-23.10.1161/ATVBAHA.107.15145617872453Search in Google Scholar

60. Wong CW, Wiedle G, Ballestrem C, et al. PECAM-1/CD31 transhomophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin alphavbeta3 in Cis. Mol Biol Cell. 2000;11:3109-21.10.1091/mbc.11.9.31091497910982404Search in Google Scholar

61. Mandell KJ, Parkos CA. The JAM family of proteins. Adv Drug Deliv Rev. 2005;57:857-67.10.1016/j.addr.2005.01.00515820556Search in Google Scholar

62. Babinska A, Azari BM, Salifu MO, et al. The F11 receptor (F11R/JAM-A) in atherothrombosis: overexpression of F11R in atherosclerotic plaques. Thromb Haemost. 2007;97:272-81.10.1160/TH06-08-0454Search in Google Scholar

63. Ostermann G, Fraemohs L, Baltus T, et al. Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium: inhibition by soluble JAM-A. Arterioscler Thromb Vasc Biol. 2005;25:729-35.10.1161/01.ATV.0000157154.14474.3b15681301Search in Google Scholar

64. Zernecke A, Liehn EA, Fraemohs L, et al. Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol. 2006;26:e10-3.10.1161/01.ATV.0000197852.24529.4fSearch in Google Scholar

65. Keiper T, Al-Fakhri N, Chavakis E, et al. The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. FASEB J. 2005;19:2078-80.10.1096/fj.05-4196fjeSearch in Google Scholar

66. Weitz-Schmidt G. Lymphocyte function-associated antigen-1 blockade by statins: molecular basis and biological relevance. Endothelium. 2003;10:43-7.10.1080/10623320303360Search in Google Scholar

67. Welzenbach K, Hommel U, Weitz-Schmidt G. Small molecule inhibitors induce conformational changes in the I domain and the I-like domain of lymphocyte function-associated antigen-1. Molecular insights into integrin inhibition. J Biol Chem. 2002;277:10590-8.10.1074/jbc.M110521200Search in Google Scholar

68. Romano M, Mezzetti A, Marulli C, et al. Fluvastatin reduces soluble P-selectin and ICAM-1 levels in hypercholesterolemic patients: role of nitric oxide. J Investig Med. 2000;48:183-9.Search in Google Scholar

69. Seljeflot I, Tonstad S, Hjermann I, et al. Reduced expression of endothelial cell markers after 1 year treatment with simvastatin and atorvastatin in patients with coronary heart disease. Atherosclerosis. 2002;162:179-85.10.1016/S0021-9150(01)00696-7Search in Google Scholar

70. Rezaie-Majd A, Maca T, Bucek RA, et al. Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 2002;22:1194-9.10.1161/01.ATV.0000022694.16328.CCSearch in Google Scholar

71. Izidoro-Toledo TC, Guimaraes DA, Belo VA, et al. Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:547-54.10.1007/s00210-011-0623-0Search in Google Scholar

72. Franzoni F, Quinones-Galvan A, Regoli F, et al. A comparative study of the in vitro antioxidant activity of statins. Int J Cardiol. 2003;90:317-21.10.1016/S0167-5273(02)00577-6Search in Google Scholar

73. Davignon J, Jacob RF, Mason RP. The antioxidant effects of statins. Coron Artery Dis. 2004;15:251-8.10.1097/01.mca.0000131573.31966.3415238821Search in Google Scholar

74. Lim S, Barter P. Antioxidant effects of statins in the management of cardiometabolic disorders. J Atheroscler Thromb. 2014;21:997-1010.10.5551/jat.2439825132378Search in Google Scholar

75. Antoniades C, Bakogiannis C, Tousoulis D, et al. Preoperative atorvastatin treatment in CABG patients rapidly improves vein graft redox state by inhibition of Rac1 and NADPH-oxidase activity. Circulation. 2010;122:S66-73.10.1161/CIRCULATIONAHA.109.927376Search in Google Scholar

76. Antoniades C, Bakogiannis C, Leeson P, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterinmediated endothelial nitric oxide synthase coupling. Circulation. 2011;124:335-45.10.1161/CIRCULATIONAHA.110.985150Search in Google Scholar

77. Antonopoulos AS, Margaritis M, Shirodaria C, et al. Translating the effects of statins: from redox regulation to suppression of vascular wall inflammation. Thromb Haemost. 2012;108:840-8.10.1160/TH12-05-0337Search in Google Scholar

78. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307-16.10.1001/jama.292.11.1307Search in Google Scholar

79. Officers A, Coordinators for the ACRGTA, Lipid-Lowering Treatment to Prevent Heart Attack T. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA. 2002;288:2998-3007.10.1001/jama.288.23.2998Search in Google Scholar

80. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149-58.10.1016/S0140-6736(03)12948-0Search in Google Scholar

81. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248-61.10.1056/NEJMoa0706201Search in Google Scholar

82. Heart Protection Study Collaborative G. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7-22.10.1016/S0140-6736(02)09327-3Search in Google Scholar

83. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195-207.10.1056/NEJMoa080764618997196Search in Google Scholar

84. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med. 1998;339:1349-57.Search in Google Scholar

85. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333:1301-7. 10.1056/NEJM1995111633320017566020Search in Google Scholar

eISSN:
2393-1817
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, other, Surgery, Anaesthesiology, Emergency Medicine and Intensive-Care Medicine