Accesso libero

Climate Regulation of Rearing-Related Buildings - Evaluating the Factors Related to the Energy Requirement of Heating/Cooling, and Analysis of Alternative Solutions

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Veysset P., Lherm M., Bébin D. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts. Agricultural Systems Volume 103 (2010), No. 1, pp. 41-50. http://dx.doi.org/10.1016/j.agsy.2009.08.00510.1016/j.agsy.2009.08.005Search in Google Scholar

[2] Tóth L. Állattartási technika [Livestock farming technology], Agricultural Expertise Publisher, Budapest, 1998, 788 p.Search in Google Scholar

[3] Ecim-Djuric O., Topisirovic G. Energy efficiency optimization of combined ventilation systems in livestock buildings. Energy and Buildings Volume 42 (2010), No. 8, pp. 1165-1171. http://dx.doi.org/10.1016/j.enbuild.2009.10.03510.1016/j.enbuild.2009.10.035Search in Google Scholar

[4] Cao G., Awbi H., Yao R., Fan Y., Sirén K., Kosonen R., Zhang J. A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment Volume 73 (2014), pp. 171-186. http://dx.doi.org/10.1016/j.buildenv.2013.12.00910.1016/j.buildenv.2013.12.009Search in Google Scholar

[5] Mösenbacher I. Optimales Stallklima: Worauf ist zu beachten? HBLFA Raumberg Raumberg-Gumpenstein (2007)Search in Google Scholar

[6] H eidari MD ., Omid M., Akr am A. Optimization of Energy Consumption of Broiler Production Farms using Data Envelopment Analysis Approach. Modern Applied Science Volume 5 (2011), No. 3, pp. 69-78. http://dx.doi.org/10.5539/mas.v5n3p6910.5539/mas.v5n3p69Search in Google Scholar

[7] S hen X., Zhang G., Wu W., Bjerg B. Model-based control of natural ventilation in dairy buildings. Computers and Electronics in Agriculture Volume 94 (2013), pp. 47-57. http://dx.doi.org/10.1016/j.compag.2013.02.00710.1016/j.compag.2013.02.007Search in Google Scholar

[8] Norton T., Grant J., Fallon R., Sun DW . Optimising the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity. Building and Environment Volume 45 (2010), No. 4, pp. 983-995. http://dx.doi.org/10.1016/j.buildenv.2009.10.00510.1016/j.buildenv.2009.10.005Search in Google Scholar

[9] Calvet S., Gates RS., Zhang G., Estellés F., Ogink NWM., Pedersen S., Berck mans D. Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosystems Engineering Volume 116 (2013), No. 3, pp. 221-231. http://dx.doi.org/10.1016/j.biosystemseng.2012.11.00410.1016/j.biosystemseng.2012.11.004Search in Google Scholar

[10] Faragó S., Gicz i, F., Winkler D. Details to the breeding biology and hand rearing of reeves’s pheasant (Syrmaticus reevesii) (Gray, 1829). Hungarian Small Game Bulletin Volume 12 (2014), pp. 105-124. http://dx.doi.org/10.17243/mavk.2014.10510.17243/mavk.2014.105Search in Google Scholar

[11] Park JH ., Peters TM ., Altmaier R., Sawvel RA. Anthony TR. Simulation of air quality and cost to ventilate swine farrowing facilities in winter. Computers and Electronics in Agriculture Volume 98 (2013), pp. 136-145. http://dx.doi.org/10.1016/j.compag.2013.08.00310.1016/j.compag.2013.08.003477083826937062Search in Google Scholar

[12] M ustafa OA. Principle of low energy building design: heating, ventilation and air conditioning. International Journal of Energy, Environment and Economics Volume 22 (2014), No. 3. pp. 189-233.Search in Google Scholar

[13] Renaudeau D., Collin A., Yahav S., Basilio V., Gourdine JL., Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal Volume 6 (2012), No. 5, pp. 707-728. http://dx.doi.org/10.1017/S175173111100244810.1017/S175173111100244822558920Search in Google Scholar

[14] Nguyen TLT ., Hermansen JE., Mogensen L. Fossil energy and GHG saving potentials of pig farming in the EU. Energy Policy Volume 38 (2010), No. 5, pp. 2561-2571. http://dx.doi.org/10.1016/j.enpol.2009.12.05110.1016/j.enpol.2009.12.051Search in Google Scholar

[15] S amer M., Abuarab ME. Development of CO2 balance for estimation of ventilation rate in naturally cross-ventilated dairy barns. American Society of Agricultural and Biological Engineers Volume 57 (2014), No. 4, http://dx.doi.org/10.13031/trans.57.1057210.13031/trans.57.10572Search in Google Scholar

[16] Collier RJ., Collier L. Strategies to reduce the impact of heat and cold stress in dairy cattle facilities. Environmental Physiology of Livestock, Wiley Online Library, 2012, pp. 335. http://dx.doi.org/10.1002/978111994909110.1002/9781119949091Search in Google Scholar

[17] S amer M., Loebsin C., Fiedler M., Ammon C., Berg W., Sanftleben P., Brunsch R. Heat balance and tracer gas technique for airflow rates measurement and gaseous emissions quantification in naturally ventilated livestock buildings. Energy and Buildings Volume 43 (2011), No. 12, pp. 3718-3728. http://dx.doi.org/10.1016/j.enbuild.2011.10.00810.1016/j.enbuild.2011.10.008Search in Google Scholar

[18] W u W., Zhai J., Zhang G., Nielsen PV. Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmospheric Environment Volume 63 (2012), pp. 179-188. http://dx.doi.org/10.1016/j.atmosenv.2012.09.04210.1016/j.atmosenv.2012.09.042Search in Google Scholar

eISSN:
2064-2520
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Electrical Engineering, Automation, Control Engineering, Metrology and Testing