1. bookVolume 8 (2018): Edizione 2 (April 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Texture and Gene Expression Analysis of the MRI Brain in Detection of Alzheimer’s Disease

Pubblicato online: 01 Nov 2017
Volume & Edizione: Volume 8 (2018) - Edizione 2 (April 2018)
Pagine: 111 - 120
Ricevuto: 21 Feb 2017
Accettato: 27 Mar 2017
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

[1] Zhou X, Liu Z, Zhou Z, Xia H: Study on Texture Characteristics of Hippocampus in MR Images of Patients with Alzheimer’s Disease. Proc. 3rd Annu. Conf. Biomedical Engineering and Informatics 2010, Yantai, Beijing.10.1109/BMEI.2010.5640016Search in Google Scholar

[2] Kassner A and Thornhill R.E: Texture Analysis: A Review of Neurologic MR Imaging Application. American Journal of Neuroradiology 2010, 31: 809-816.10.3174/ajnr.A2061796417420395383Apri DOISearch in Google Scholar

[3] X. Li, H. Xia, Z. Zhuo, L. Thong, 3D Texture Analysis of Hippocampus Based on MR Images in Patients with Alzheimer Disease, and Mild Cognitive Impairment,” in International Conference on Biomedical Engineering and Informatics, Beijing, 2010.10.1109/BMEI.2010.5639520Search in Google Scholar

[4] J. Zhang J, Y. Chunsui, and Gui Lian J, 3D texture analysis on MRI images of Alzheimer’s disease, Brain Imaging and Behavior, vol. 6, pp. 61-69, 2012.10.1016/j.brainres.2012.03.06522560097Apri DOISearch in Google Scholar

[5] Rajeesh J, S.M. Rama, Palinikumar S, Gopalakhrisnan T: Discrimination of Alzheimer’s disease using hippocampus texture features from MRI. Journal Asian Biomedicine 2012, 6: 87-94.Search in Google Scholar

[6] Xia H, Tong L, Zhou X, Zhang J: Texture Analysis and Volumetry of Hippocampus and Medial Temporal Lobe in Patients with Alzheimer’s Disease. in International Conference on Biomedical Engineering 2012, Macau, Macao.10.1109/iCBEB.2012.395Search in Google Scholar

[7] Simões R, Slump C, Marie A: Using local texture maps of brain MR images to detect Mild Cognitive Impairment. 21st International Conference on Pattern Recognition 2012, JapanSearch in Google Scholar

[8] P. Morgado, M. Silveira, and J.S. Marques, J. Computer Methods in Biomechanics and Biomedical Engineering: 1, 183 (2013)10.1080/21681163.2013.764609Search in Google Scholar

[9] Ojala T: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Journal IEEE Transaction on Pattern Analysis and Machine Intelligence 2002, 24: 971-987.10.1109/TPAMI.2002.1017623Apri DOISearch in Google Scholar

[10] Pietikainen M, Zhao G, Hadid A, Ahonen T: Local Binary Patterns for Still Images. Computer Vision Using Local Binary Patterns. London: Springer; 2011 13-37.10.1007/978-0-85729-748-8_2Search in Google Scholar

[11] Guo Z, Liu Z, D Zhang: A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Transactions on Image Processing 2010, 19: 1657-1663.10.1109/TIP.2010.204495720215079Search in Google Scholar

[12] Unay D, Ekin A, Cetin M, Jasinchi R, Erchil A: Robustness of Local Binary Patterns in Brain MRI Analysis. in Proc. 29th Ann. Conference of the IEEE EMBS 2007, Lyon.10.1109/IEMBS.2007.435273518002401Search in Google Scholar

[13] D. Sarwinda and A. Bustamam, Detection of Alzheimer’s disease using advanced local binary pattern from hippocampus and whole brain of MR images, 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 5051-505610.1109/IJCNN.2016.7727865Search in Google Scholar

[14] T. Ojala, Multiresolution gray-scale, and rotation invariant texture classification with local binary patterns, Pattern Analysis and Machine Intelligence, vol. 24, pp. 971-987, 2002.10.1109/TPAMI.2002.1017623Apri DOISearch in Google Scholar

[15] A. C. Rencher, Editor, Methods of Multivariate Analysis, 2nd ed, John Willey & Sons Publishers, Canada, 2002.10.1002/0471271357Search in Google Scholar

[16] T. Ahonen, J. Matas, C. He, and M. Pietikainen, Editors. Proceedings of the 16th Annual Scandinavian Conference on Image Analysis, (2009) June 15-18; Oslo, Norway.Search in Google Scholar

[17] Nanni L, Lumini A, Brahnam S: Local Binary Pattern Variants as Texture Descriptors for Medical Image Analysis. Artificial Intelligence in Medicine 2010, 49: 117-125.10.1016/j.artmed.2010.02.006Search in Google Scholar

[18] Association A: 2012 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association2012, 8:131-168.Search in Google Scholar

[19] Ojala T, Pietikinen M, and Menp T: A comparative study of texture measures with classification based on featured distributions. Journal Pattern Recognition 1996, 29: 51-59.10.1016/0031-3203(95)00067-4Search in Google Scholar

[20] Ahonen T, Matas J, He C, Pietikainen M: Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. Proc. 16th Annual Scandinavian Conference on Image Analysis 2009, Norway.10.1007/978-3-642-02230-2_7Search in Google Scholar

[21] M. Das, B. Borah. Biclustering of Gene Expression Data Using Two-Phase Method. International Journal of Computer Applications Vol. 103 No. 13. 2014.10.5120/18132-9232Search in Google Scholar

[22] H. Turner, T. Bailey, W. Krzanowski. Improved Biclustering of Microarray Data Demonstrated through Systematic Performance Tests. Elseiver. Computational Statistics & Data Analysis, pp. 235 – 254. 2005.10.1016/j.csda.2004.02.003Apri DOISearch in Google Scholar

[23] T. Kanungo, D. Mount, N. Netanyahu, et al. An Efficient K-Means Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 24 (7), pp. 881 – 892. 2002.10.1109/TPAMI.2002.1017616Apri DOISearch in Google Scholar

[24] A. Bustamam, G. Ardaneswari, D. Lestari, H. Tasman. Performance Evaluation of Fast Smith-Waterman Algorithm for Sequence Database Searches using CUDA GPU-Based Parallel Computing. Journal of Next Generation Information Technology Vol. 5 No. 2, pp. 38 – 46. 2014.Search in Google Scholar

[25] K.S. Pollard, M.J. Van de Laan. Statistical Inference for Simultaneous Clustering of Gene Expression Data. Math Biosci, 176, pp. 99 – 121. 2002.10.1016/S0025-5564(01)00116-XSearch in Google Scholar

[26] S.C. Mdaeira, A.L. Oliveira. Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1, pp. 24 – 45. 2004.10.1109/TCBB.2004.217048406Search in Google Scholar

[27] L. Lazzeroni, A. Owen. Plaid Models for Gene Expression Data. Statistica Sinica 12, pp. 61 – 86. 2002.Search in Google Scholar

[28] J.A. Hartingan. Clustering Algorithm. New York: John Willey and Sons, Inc. 1997.Search in Google Scholar

[29] Zhang D, Wang Y, Zhuo L, Yuan H, Shen D: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. Journal Neuroimage 2011, 5: 856-867.10.1016/j.neuroimage.2011.01.008305736021236349Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo