1. bookVolume 10 (2017): Edizione 1 (September 2017)
Dettagli della rivista
Prima pubblicazione
19 Jun 2009
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Pyridoindole SMe1EC2 as cognition enhancer in ageing-related cognitive decline

Pubblicato online: 14 Feb 2018
Volume & Edizione: Volume 10 (2017) - Edizione 1 (September 2017)
Pagine: 11 - 19
Ricevuto: 13 May 2016
Accettato: 10 Jul 2017
Dettagli della rivista
Prima pubblicazione
19 Jun 2009
Frequenza di pubblicazione
4 volte all'anno

Aloisi F. (2001) Immune function of microglia. Glia36: 165.10.1002/glia.1106Apri DOISearch in Google Scholar

Atcha Z, Rourke C, Neo AHP, Goh CWH, Lim JSK, Aw C-C, Browne ER, Pemberton DJ. (2010). Alternative Method of Oral Dosing for Rats. J Am Assoc Lab Anim Sci. 49(3): 335–343.Search in Google Scholar

Balcerczyk A, Bartosz G, Drzewinska J, Piotrowski Ł, Pulaski Ł, Stefek M. (2014). Antioxidant action of SMe1EC2, the low-basicity derivative of the pyridoindole stobadine, in cell free chemical models and at cellular level Interdiscip Toxicol7(1): 27–32.)10.2478/intox-2014-0005Search in Google Scholar

Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci19(5): 1708–16.Search in Google Scholar

Berr C. (2000). Cognitive impairment and oxidative stress in the elderly: results of epidemiological studies. Biofactors13(1–4): 205–9.10.1002/biof.5520130132Apri DOISearch in Google Scholar

Bezprozvanny I. (2010). The rise and fall of Dimebon. Drug News Perspect23(8): 518–523.Search in Google Scholar

Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol27(2–3): 229–37.10.1016/0165-5728(90)90073-VApri DOISearch in Google Scholar

Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jugder BE, Jayasena T, Inestrosa NC, Sachdev PS. (2017). Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Front Aging Neurosci9: 66.10.3389/fnagi.2017.00066537039428405187Apri DOISearch in Google Scholar

Broskova Z, Sotnikova R, Nedelcevova J, Bagi Z. (2013). Effect of a novel stobadine derivative on isolated rat arteries. Interdiscip Toxicol6(2): 63–66.Search in Google Scholar

Brunk UT. (1989). On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells. Adv Exp Med Biol266: 313–20.Search in Google Scholar

Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM. (2004). Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev125(4): 325–35.Search in Google Scholar

Da Cunha C, Wietzikoski EC, Ferro MM, Martinez GR, Vital MA, Hipólide D, Tufik S, Canteras NS. (2008). Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res189(2): 364–72.Search in Google Scholar

Donahue AN, Aschner M, Lash LH, Syversen T, Sonntag WE. (2006).Growth hormone administration to aged animals reduces disulfide glutathione levels in hippocampus. Mech Ageing Dev127(1): 57–63.Search in Google Scholar

Dringen R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal7(9–10): 1223–33.Search in Google Scholar

Dröge W, Schipper HM. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell6(3): 361–370.10.1111/j.1474-9726.2007.00294.x197477517517043Apri DOISearch in Google Scholar

Dubovický M, Császár E, Melicherčíková K, Kuniaková M, Račková L. (2014). Modulation of microglial function by the antidepressant drug venlafaxine. Interdiscip Toxicol7(4): 201–7.Search in Google Scholar

Forman HJ, Davies KJ, Ursini F. (2014). How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med66: 24–35.Search in Google Scholar

Foster TC, DeFazio RA, Bizon JL. (2012). Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci4: 12.Search in Google Scholar

Friedman J. (2011) Why Is the Nervous System Vulnerable to Oxidative Stress?. In: Gadoth N., Göbel H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press.10.1007/978-1-60327-514-9_2Search in Google Scholar

Gasparova Z, Janega P, Babal P, Snirc V, Stolc S, Mach M, Ujhazy E. (2009). Effect of the new pyridoindole antioxidant SMe1EC2 on functional deficits and oedema formation in rat hippocampus exposed to ischaemia in vitro. Neuro Endocrinol Lett30: 574–581.Search in Google Scholar

Gasparova Z, Ondrejickova O, Gajdosikova A, Gajdosik A, Snirc V, Stolc S. (2010). Oxidative stress induced by the Fe2+/ascorbic acid system or model ischemia in vitro: Effect of carvedilol and pyridoindole antioxidant SMe1EC2 in young and adult rat brain tissue. Interdiscip Toxicol3: 122–126.Search in Google Scholar

Gasparova Z, Snirc V, Stolc S. (2011). The new pyridoindole antioxidant SMe1EC2 and its intervention in hypoxia/hypoglycemia-induced impairment of longterm potentiation in rat hippocampus. Interdiscip Toxicol4: 56–61.Search in Google Scholar

Gasparova Z, Stara V, Stolc, S. (2014a). Effect of antioxidants on functional recovery after in vitro-induced ischemia and long-term potentiation recorded in pyramidal layer of the CA1 area of rat hippocampus. Gen Physiol Biophys33(1): 43–52.10.4149/gpb_201306223940087Apri DOISearch in Google Scholar

Gasparova Z, Stara V, Janega P, Navarova J, Sedlackova N, Mach M, Ujhazy E. (2014b). Pyridoindole antioxidant-induced preservation of rat hippocampal pyramidal cell number linked with reduction of oxidative stress yet without influence on cognitive deterioration in Alzheimer-like neurode-generation. Neuro Endocrinol Lett35(6): 454–62.Search in Google Scholar

Giorgetti M1, Gibbons JA, Bernales S, Alfaro IE, Drieu La Rochelle C, Cremers T, Altar CA, Wronski R, Hutter-Paier B, Protter AA. (2010). Cognition-enhancing properties of Dimebon in a rat novel object recognition task are unlikely to be associated with acetylcholinesterase inhibition or N-methyl-D-aspartate receptor antagonism. J Pharmacol Exp Ther333(3): 748–57.Search in Google Scholar

Guix F, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, De Strooper B. (2012). Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer’s disease. EMBO Mol Med4(7): 660–673.Search in Google Scholar

Halliwell B, Gutteridge JM. (1989). Free Radicals in Biology and Medicine, second ed. Clarendon Press, Oxford.Search in Google Scholar

Harman D. (1992). Free radical theory of aging. Mutat Res. 275: 257–66.Search in Google Scholar

Jung T, Bader N, Grune T. (2007). Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci1119: 97–111.10.1196/annals.1404.00818056959Apri DOISearch in Google Scholar

Juranek I, Horakova L, Rackova L, Stefek M. (2010). Antioxidants in treating pathologies involving oxidative damage: an update on medicinal chemistry and biological activity of stobadine and related pyridoindoles. Curr Med Chem17: 552–570.10.2174/09298671079041631720015031Apri DOISearch in Google Scholar

Juranek I, Rackova L, Stefek M. (2012). Stobadine – an indole type alternative to the phenolic antioxidant reference trolox: chapter 19. In Biochemistry Edited by Deniz Ekinci, Rijeka: InTech, 443–452.10.5772/32784Search in Google Scholar

Kumar A, Singh A. (2015). A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol6: 206.Search in Google Scholar

Martin WR, Ye FQ, Allen PS. (1998). Increasing striatal iron content associated with normal aging. Mov Disord13: 281–286.Search in Google Scholar

Mrvová N, Škandík M, Kuniaková M, Račková L. (2015). Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem Int90: 246–54.Search in Google Scholar

Norden DM, Godbout JP. (2013). Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation. Neuropathol Appl Neurobiol39(1): 19–34.Search in Google Scholar

Oenzil F, Kishikawa M, Mizuno T, Nakano M. (1994). Age-related accumulation of lipofuscin in three different regions of rat brain. Mech Ageing Dev76: 157–63.10.1016/0047-6374(94)91590-3Apri DOISearch in Google Scholar

Pfizer. Amyloid Imaging And Safety Study Of Subcutaneous Bapineuzumab In Subjects With Mild to Moderate Alzheimer’s Disease (SUMMIT AD) NCT01254773Search in Google Scholar

Račková L, Ergin V, Burcu Bali E, Kuniaková M, Karasu Ç. (2014). Pomegranate Seed Oil Modulates Functions and Survival of BV-2 Microglial Cells in vitro. Int J Vitam Nutr Res84(5–6): 295–309.Search in Google Scholar

Rackova L, Snirc V, Jung T, Stefek M, Karasu C, Grune T. (2009). Metabolism induced oxidative stress is a mediator of glucose toxicity in HT22 neuronal cells. Free Radic Res43: 876–886.Search in Google Scholar

Rackova L, Snirc V, Majekova M, Majek P, Stefek M. (2006). Free radical scavenging and antioxidant activities of substituted hexahydropyridoindoles. Quantitative structure-activity relationships. J Med Chem49: 2543–2548.Search in Google Scholar

Rackova L, Stefek M, Majekova M. (2002). Structural aspects of antioxidant activity of substituted pyridoindoles. Redox Rep7(4): 207–214.10.1179/135100002125000578Apri DOISearch in Google Scholar

Rapp PR, Gallagher M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci USA93(18): 9926–9930.10.1073/pnas.93.18.9926Apri DOISearch in Google Scholar

Rook GA, Steele J, Umar S, Dockrell HM. (1985). A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon. J Immunol Methods82, 161e167.10.1016/0022-1759(85)90235-2Apri DOISearch in Google Scholar

Shoji H, Takao K, Hattori S, Miyakawa T. (2016). Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain9: 11.Search in Google Scholar

Shukitt-Hale B. (1999). The effects of aging and oxidative stress on psycho-motor and cognitive behavior. Age22: 9–17.10.1007/s11357-999-0002-7Apri DOISearch in Google Scholar

Skoumalova A, Rofina J, Schwippelova Z, Gruys E, Wilhelm J. (2003). The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. J Exp Gerontol38(6): 711–9.10.1016/S0531-5565(03)00071-8Apri DOISearch in Google Scholar

Socci DJ, Crandall BM, Arendash GW. (1995). Chronic antioxidant treatment improves the cognitive performance of aged. Rats Brain Research693: 88–94.Search in Google Scholar

Spitzer N, Sammons GS, Price EM. (2011). Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. J Neurosci Methods197(1): 48–55.Search in Google Scholar

Stolc S, Snirc V, Gajdosikova A, Gajdosik A, Gasparova Z, Ondrejickova O, Sotnikova R, Viola A, Rapta P, Jariabka P, Synekova I, Vajdova M, Zacharova S, Nemcek V, Krchnarova V. (2008) New pyridoindoles with antioxidant and neuroprotective actions. In Trends in Pharmacological Research Bauer, V. Ed. Institute of Experimental Pharmacology: Bratislava, 118–136.Search in Google Scholar

Stolc S, Snirc V, Majekova M, Gasparova Z, Gajdosikova A, Stvrtina S. (2006). Development of the new group of indole-derived neuroprotective drugs affecting oxidative stress. Cell Mol Neurobiol26(7–8): 1495–1504.Search in Google Scholar

Terman A, Brunk UT. (2006). Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal8: 197–204.Search in Google Scholar

Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. (2004). Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci5: 863–873.10.1038/nrn153715496864Apri DOISearch in Google Scholar

Zhu Y, Carvey PM, Ling Z. (2006). Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res1090(1): 35–44.Search in Google Scholar

Yamada S, Kumazawa S, Ishii T, Nakayama T, Itakura K, Shibata N, Kobayashi M, Sakai K, Osawa T, Uchida K. (2001). Immunochemical detection of a lipofuscin-like fluorophore derived from malondialdehyde and lysine. J Lipid Res42(8): 1187–96.Search in Google Scholar

Ye SM, Johnson RW. (1999). Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol93: 139.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo