Accesso libero

Artificial Neural Network Approach for Modeling of Ni(Ii) Adsorption from Aqueous Solution by Peanut Shell

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Çay S, Uyanik A, Özaşik A. Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Separ Purif Technol. 2004;38(3):273-280. DOI: 10.1016/j.seppur.2003.12.003.10.1016/j.seppur.2003.12.003Open DOISearch in Google Scholar

[2] Tabaraki R, Nateghi A. Multimetal adsorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 2014;71:197-205. DOI: 10.1016/j.ecoleng.2014.07.031.10.1016/j.ecoleng.2014.07.031Open DOISearch in Google Scholar

[3] Zimmerman JB, Mihelcic JR, Smith J. Global stressors on water quality and quantity. Environ Sci Technol. 2008;42:4247-4254. DOI: 10.1021/es0871457.1860554010.1021/es087145718605540Search in Google Scholar

[4] Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229-238. DOI: 10.1016/j.resconrec.2013.01.019.10.1016/j.resconrec.2013.01.019Open DOISearch in Google Scholar

[5] Malamis S, Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater. 2013;252-253:428-461. DOI: 10.1016/j.jhazmat.2013.03.024.10.1016/j.jhazmat.2013.03.02423644019Open DOISearch in Google Scholar

[6] Khairy M, El-Safty SA, Shenashen MA. Environmental remediation and monitoring of cadmium. TrAC Trend Anal Chem. 2014;62:56-68. DOI: 10.1016/j.trac.2014.06.013.10.1016/j.trac.2014.06.013Open DOISearch in Google Scholar

[7] Pap S, Radonic J, Trifunovic S, Adamovic D, Mihajlovic I, Miloradov MV, et al. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J Environ Manage. 2016;184:297-306. DOI: 10.1016/j.jenvman.2016.09.089.10.1016/j.jenvman.2016.09.08927729179Open DOISearch in Google Scholar

[8] Dawodua FA, Akpomie KG. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution onto a Nigerian kaolinite clay. J Mater Res Technol. 2014;3:129-141. DOI: 10.1016/j.jmrt.2014.03.002.10.1016/j.jmrt.2014.03.002Search in Google Scholar

[9] Vieira MGA, Almeida Neto AF, Gimenes ML, da Silva MGC. Removal of nickel on Bofe bentonite calcined clay in porous bed. J Hazard Mater. 2010;176:109-118. DOI: 10.1016/j.jhazmat.2009.10.128.10.1016/j.jhazmat.2009.10.12820022694Open DOISearch in Google Scholar

[10] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407-418. DOI: 10.1016/j.jenvman.2010.11.011.10.1016/j.jenvman.2010.11.01121138785Search in Google Scholar

[11] Garba ZN, Shikin FBS, Afidah AR. Valuation of activated carbon from waste tea for the removal of a basic dye from aqueous solution. J Chem Eng Chem Res. 2015;2:623-633. https://s3.amazonaws.com/academia.edu.documents/37903468/JCECR_PAPER.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1518191815&Signature=EuAEpe05%2BXh%2FQ4XjINf2TnqKdqc%3D&response-content-disposition=inline%3B%20filename%3DValuation_of_Activated_Carbon_from_Waste.pdf.Search in Google Scholar

[12] Mohammadi M, Ghaemi A, Torab-Mostaedi M, Asadollahzadeh M, Hemmati A. Adsorption of cadmium(II) and nickel(II) on dolomite powder. Desal Water Treat. 2015;53:149-157. DOI: 10.1080/19443994.2013.836990.10.1080/19443994.2013.836990Open DOISearch in Google Scholar

[13] Mondal S, Sinha K, Aikat K, Halder G. Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung seed husk. J Environ Chem Eng. 2015;3:187-195. DOI: 10.1016/j.jece.2014.11.021.10.1016/j.jece.2014.11.021Open DOISearch in Google Scholar

[14] Qiu G, Xie Q, Liu H, Chen T, Xie J, Li H. Removal of Cu(II) from aqueous solutions using dolomite-palygorskite clay: performance and mechanisms. Appl Clay Sci. 2015;118:107-115. DOI: 10.1016/j.clay.2015.09.008.10.1016/j.clay.2015.09.008Open DOISearch in Google Scholar

[15] Farghali AA, Bahgat M, Enaiet A, Khedr MH. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci. 2013;2:61-71. DOI: 10.1016/j.bjbas.2013.01.001.10.1016/j.bjbas.2013.01.001Open DOISearch in Google Scholar

[16] Davarnejad R, Panahi P. Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology. J Industrial Eng Chem. 2016;33:270-275. DOI: 10.1016/j.jiec.2015.10.013.10.1016/j.jiec.2015.10.013Open DOISearch in Google Scholar

[17] Cao J, Wu Y, Jin Y, Yilihan P, Huang W. Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. J Taiwan Inst Chem Eng. 2014;45:860-868. DOI: 10.1016/j.jtice.2013.09.011.10.1016/j.jtice.2013.09.011Open DOISearch in Google Scholar

[18] Akunwa NK, Muhammad MN, Akunna JC. Treatment of metal contaminated wastewater: a comparison of low-cost biosorbents. J Environ Manage. 2014;146:517-523. DOI: 10.1016/j.jenvman.2014.08.014.10.1016/j.jenvman.2014.08.01425218332Open DOISearch in Google Scholar

[19] Anna B, Kleopas M, Constantine S, Anestis F, Maria B. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environ Earth Sci. 2015;73:5435-5444. DOI: 10.1007/s12665-014-3798-0.10.1007/s12665-014-3798-0Open DOISearch in Google Scholar

[20] Sun Y, Wang Q, Chen C, Tan X, Wang X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol. 2012;46:6020-6027. DOI: 10.1021/es300720f.10.1021/es300720f22550973Open DOISearch in Google Scholar

[21] Sun YB, Zhang R, Ding CC, Wang XX, Cheng WC, Chen CL, et al. Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta. 2016;180:51-65. DOI: 10.1016/j.gca.2016.02.012.10.1016/j.gca.2016.02.012Open DOISearch in Google Scholar

[22] Al Dwairi R, Al-Rawajfeh A. Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. J Univ Chem Technol Metall. 2012;41:69-76. http://dl.uctm.edu/journal/node/j2012-1/8_Al_Dwairi%20%2069-76.pdf.Search in Google Scholar

[23] Jiang MQ, Jin XY, Lu XQ, Chen ZL. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010;25:233-39. DOI: 10.1016/j.desal.2009.11.005.10.1016/j.desal.2009.11.005Open DOISearch in Google Scholar

[24] Kapur M, Gupta R, Mondal MK. Parametric optimization of Cu(II) and Ni(II) adsorption onto coal dust and magnetized sawdust using Box-Behnken design of experiments. Environ Progress Sust Energy. 2016;35(6):1597-1604. DOI: 10.1002/ep.12393.10.1002/ep.12393Open DOISearch in Google Scholar

[25] Vilvanathan S, Shanthakumar S. Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: adsorption kinetics, equilibrium and thermodynamics study. Desalin Water Treat. 2016;57:3995-4007. DOI: 10.1080/19443994.2014. 989913.10.1080/19443994.2014.989913Open DOISearch in Google Scholar

[26] Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S. Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J. 2011; 67:122-131. DOI: 10.1016/j.cej.2010.12.010.10.1016/j.cej.2010.12.010Open DOISearch in Google Scholar

[27] Bojic DV, Nikolic GS, Mitrovic JZ, Radovic MD, Petrovic MM, Markovic DZ, et al. Kinetic, equilibrium and thermodynamic studies of Ni(II) ions sorption on sulfuric acid treated lagenaria vulgaris shell. Chem Ind Chem Eng Q. 2016;22(3):235-247. DOI: 10.2298/CICEQ150318037B.10.2298/CICEQ150318037Open DOISearch in Google Scholar

[28] Tahervand T, Jalali M. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environ Monit Assess. 2016;188:322. DOI: 10.1007/s10661-016-5313-4.10.1007/s10661-016-5313-427147235Open DOISearch in Google Scholar

[29] Garba ZN, Nkole I, Amina U, Abdullahi K. Evaluation of optimum adsorption conditions for Ni(II) and Cd(II) removal from aqueous solution by modified plantain peels (MPP). Beni-Suef Univ J Basic Appl Sci. 2016;5:170-179. https://ac.els-cdn.com/S2314853516300142/1-s2.0-S2314853516300142-main.pdf?_tid=19073e0a-0daa-11e8-a2f5-00000aacb361&acdnat=1518188665_61c173d67ac6e7dfafd0eb4aa6df7280.Search in Google Scholar

[30] Liao B, Sun W, Sang-lan Ding NG, Su S. Equilibriums and kinetics studies for adsorption of Ni(II) ion onchitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochem Eng Aspects. 2016;501:32-41. DOI: 10.1016/j.colsurfa.2016.04.043.10.1016/j.colsurfa.2016.04.043Open DOISearch in Google Scholar

[31] Maleki S, Karimi-Jashni A. Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Appl Clay Sci. 2017;137:213-224. DOI: 10.1016/j.clay.2016.12.008.10.1016/j.clay.2016.12.008Open DOISearch in Google Scholar

[32] Khataee AR, Dehghan G, Zarei M, Ebadi A, Pourhassan M. Neural network modeling of biotreatment of triphenylmethane dye solution by a gren macroalgae. Chem Eng Res Design. 2011;89:172-178. DOI: 10.1016/j.cherd.2010.05.009.10.1016/j.cherd.2010.05.009Open DOISearch in Google Scholar

[33] Das B, Mondal NK. Calcareous soil as a new adsorbent to remove lead from aqueous solution: Equilibrium, kinetic and thermodynamic study. Uni J Environ Res Tech. 2011;1(4):515-530.Search in Google Scholar

[34] Khan TA, Shahjahan EA. Removal of basic dyes from aqueous solution by adsorption onto binaryiron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling. Appl Clay Sci. 2015;107:70-77. DOI: 10.1016/j.clay.2015.01.005.10.1016/j.clay.2015.01.005Open DOISearch in Google Scholar

[35] Asl SMH, Ahmadi M, Ghiasvand M, Tardast A, Katal R. Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J Ind Eng Chem. 2013;19:1044-1055. DOI: 10.1016/j.jiec.2012.12.001.10.1016/j.jiec.2012.12.001Open DOISearch in Google Scholar

[36] Allen SJ, Gan Q, Matthews R, Johnson PA. Comparison of optimised isotherm models for basic dye adsorption by kuzdu. Bioresour Technol. 2003;88(2):143-152. DOI: 10.1002/(SICI)1097-4660(199704)68:4<442.10.1002/(SICI)1097-4660(199704)68:4<44212576008Open DOISearch in Google Scholar

[37] Katal R, Sefti MV, Jafari M, Dehaghani AHS, Sharifian S, Ghayyem MA. Study effect of different parameters on the sulphate sorption onto nano alumina. J Ind Eng Chem. 2012;18:230-236. DOI: 10.1016/j.jiec.2011.11.012.10.1016/j.jiec.2011.11.012Open DOISearch in Google Scholar

[38] Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, et al. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. DOI: 10.1016/j.clay.2013.08.033.10.1016/j.clay.2013.08.033Open DOISearch in Google Scholar

[39] Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-827. DOI: 10.1002/cjce.5450760419.10.1002/cjce.5450760419Open DOISearch in Google Scholar

[40] Murugesan A, Ravikumar L, Sathya Selva Bala V, Senthil Kumar P, Vidhyadevi T, Dnesh Kirupha S, et al. Removal of Pb(II) Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: equilibrium and kinetic approach. Desalination. 2011;271:199-208. DOI: 10.1016/j.desal.2010.12.029.10.1016/j.desal.2010.12.029Open DOISearch in Google Scholar

[41] Jamshidi M, Ghaedi M, Dashtian K, Hajati S, Bazrafshan AA. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: derivative spectrophotometric, optimization, kinetic and isotherm study. Ultrason Sonochem. 2016;32:119-131. DOI: 10.1016/j.ultsonch.2016.03.004.2715075210.1016/j.ultsonch.2016.03.00427150752Search in Google Scholar

[42] Shah J, Jan MR, Haq A, Zeeshan M. Equilibrium, kinetic and thermodynamic studies for sorption of Ni(II) from aqueous solution using formaldehyde treated waste tea leaves. J Saudi Chemical Soc. 2015;19(3):301-310. DOI: 10.1016/j.jscs.2012.04.004.10.1016/j.jscs.2012.04.004Open DOISearch in Google Scholar

[43] Enayatollahi I, Bazzazi AA, Asadi A. Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock Mech Rock Eng. 2014;47:799-807. DOI: 10.1007/s00603-013-0415-6.10.1007/s00603-013-0415-6Open DOISearch in Google Scholar

[44] Chairez I, Garcia-Pena I, Cabrera A. Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. J Process Control. 2009;19:1103-1110. DOI: 10.1016/j.jprocont.2008.12.009.10.1016/j.jprocont.2008.12.009Open DOISearch in Google Scholar

[45] Yildiz S, Değirmenci M. Estimation of oxygen exchange during treatment sludge composting through multiple regression and artificial neural networks. Int J Environ Res. 2015;9(4):1173-1182. DOI: 10.22059/IJER.2015.1007.10.22059/IJER.2015.1007Open DOISearch in Google Scholar

[46] Agarwal S, Tyagi I, Kumar GV, Ghaedi M, Masoomzade M. Kinetics and thermodynamics of methyl orange adsorption from aqueous solutions-artificial neural network-particle swarm optimization modeling. J Molecular Liquids. 2016;218:354-362. DOI: 10.1016/j.molliq.2016.02.048.10.1016/j.molliq.2016.02.048Open DOISearch in Google Scholar

[47] Ghaedi M, Zeinali N, Maghsoudi M, Purkait MK. Artificial Neural Network (ANN) method for modeling of sunset yellow dye adsorption using nickel sulfide nanoparticle loaded on activated carbon: kinetic and isotherm study. J Dispersion Sci Tech. 2015;36:1339-1348. DOI: 10.1080/01932691.2014.964359.10.1080/01932691.2014.964359Open DOISearch in Google Scholar

[48] Kunnambath PM, Thirumalaisamy S. Characterization and utilization of tannin extract for the selective adsorption of Ni(II) ions from water. Hindawi Publ Corp J Chem. 2015;9 pages. DOI: 10.1155/2015/498359.10.1155/2015/498359Open DOISearch in Google Scholar

[49] Zhao Y, Yang S, Ding D, Chen J, Yang Y, Lei Z, et al. Effective adsorption of Cr(VI) from aqueous solution using natural akadama clay. J Colloid Interface Sci. 2013;395:198-204. DOI: 10.1016/j.jcis.2012.12.054.10.1016/j.jcis.2012.12.054Open DOISearch in Google Scholar

[50] Zhu X, Lan L, Xiang N, Liu W, Zhao Q, Li H. Thermodynamic studies on the adsorption of Cu2+, Ni2+ and Cd2+ onto amine-modified bentonite. Bull Chem Soc Ethiop. 2016;30(3):357-367. DOI: 10.4314/bcse.v30i3.4.10.4314/bcse.v30i3.4Open DOISearch in Google Scholar

[51] Kiliç F, Sarici Özdemir Ç. Experimental and modeling studies of methylene blue adsorption onto particles of peanut shell. Part Sci Tech. 2016;34(6):658-664. DOI: 10.1080/02726351.2015.1102188.10.1080/02726351.2015.1102188Open DOISearch in Google Scholar

[52] Alothman ZA, Naushad M, Ali R. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid. Environ Sci Pollut Res. 2013;20:3351-3365. DOI: 10.1007/s11356-012-1259-4.10.1007/s11356-012-1259-4Open DOISearch in Google Scholar

[53] Malkoc E, Nuhoglu Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J Hazard Mater. 2005;127(1-3):120-128. DOI: 10.1016/j.jhazmat.2005.06.030.10.1016/j.jhazmat.2005.06.030Open DOISearch in Google Scholar

[54] Mahramanlioglu M, Kizilcikli I, Bicer IO. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluorine Chem. 2002;115(1);41-47. DOI: 10.1016/S0022-1139(02)00003-9.10.1016/S0022-1139(02)00003-9Open DOISearch in Google Scholar

[55] Giwa AA, Abdulsalam KA, Wewers F, Oladipo MA. Biosorption of acid dye in single and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. Hindawi Publish Corp J Chem. 2016;Article ID 6436039,11 pages. DOI: 10.1155/2016/6436039.10.1155/2016/6436039Open DOISearch in Google Scholar

[56] Maheshwari U, Mathesan B, Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism. Proc Safety Environ Protec. 2015;98:198-210. DOI: 10.1016/j.psep.2015.07.010.10.1016/j.psep.2015.07.010Open DOISearch in Google Scholar

[57] Li H, Huang G, An C, Hu J, Yang S. Removal of tannin from aqueous solution by adsorption onto treated coal fly ash: kinetic, equilibrium, and thermodynamic studies. Ind Eng Chem Res. 2013;52:15923-15931. DOI: 10.1021/ie402054w.10.1021/ie402054wOpen DOISearch in Google Scholar

[58] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007Open DOISearch in Google Scholar

[59] Luo X, Zhang L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater. 2009;171:340-347. DOI: 10.1016/j.jhazmat.2009.06.009.10.1016/j.jhazmat.2009.06.00919646813Open DOISearch in Google Scholar

[60] Sawalha MF, Videa JRP, Gonzalez JR, Gardea-Torresdey JL. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. J Colloid Interface Sci. 2006;300:100-104. DOI: 10.1016/j.jcis.2006.03.029.10.1016/j.jcis.2006.03.02916600278Open DOISearch in Google Scholar

[61] Kłos A. Determination of sorption properties of heavy metals in various biosorbents. Ecol Chem Eng S. 2018;25(2): 201-216. DOI: 10.1515/eces-2018-0013.10.1515/eces-2018-0013Open DOISearch in Google Scholar

[62] Abd El-Latif M, Elkady M. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination. 2010;255:21-43. DOI: 10.1016/j.desal.2010.01.020.10.1016/j.desal.2010.01.020Open DOISearch in Google Scholar

[63] Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol. 1996;17:71-77. DOI: 10.1080/09593331708616362.10.1080/09593331708616362Open DOISearch in Google Scholar

[64] Li Q, Zhai J, Zhang W, Wang M, Zhou J. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater. 2007;141:163-167. DOI: 10.1016/j.jhazmat.2006.06.109.10.1016/j.jhazmat.2006.06.10916930824Open DOISearch in Google Scholar

[65] Vaghetti JCP, Lima EC, Royer B, Cardoso NF, Martins B, Calvete T. Pecan nutshell as biosorbent to remove toxic metals from aqueous solution. Sep Sci Technol. 2009;44:615-644. DOI: 10.1080/01496390802634331.10.1080/01496390802634331Open DOISearch in Google Scholar

[66] Mohan D, Singh KP. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse an agricultural waste. Water Res. 2002;36:2304-2318. DOI: 10.1016/S0043-1354(01)00447-X.10.1016/S0043-1354(01)00447-XOpen DOISearch in Google Scholar

[67] Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J Hazard Mater. 2008;152:407-414. DOI: 10.1016/j.jhazmat.2007.07.028.10.1016/j.jhazmat.2007.07.028Open DOISearch in Google Scholar

[68] Kulkarni RM, Shetty KV, Srinikethan G. Cadmium(II) and nickel(II) biosorption by Bacillus laterosporus (MTCC 1628). J Taiwan Inst Chem Eng. 2014;45(4):1628-1635. DOI: 10.1016/j.jtice.2013.11.006.10.1016/j.jtice.2013.11.006Open DOISearch in Google Scholar

[69] Ahmad MF, Haydar S, Quraishi TA. Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeter Biodeg. 2013;83:119-128. DOI: 10.1016/j.ibiod.2013.04.016.10.1016/j.ibiod.2013.04.016Open DOISearch in Google Scholar

[70] Allen SJ, Whitten LI, Murkal M, Duggan O. The adsorption of pollutants by peat, lignite and activated chars. J Chem Tech Biotechnol. 1997;68(4):442-452. DOI: 10.1002/(SICI)1097-4660(199704)68:4<442.10.1002/(SICI)1097-4660(199704)68:4<442Open DOISearch in Google Scholar

[71] Bulut Y, Aydin HA. Kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006;194:259-267. DOI: 10.1016/j.desal.2005.10.032.10.1016/j.desal.2005.10.032Open DOISearch in Google Scholar

[72] Rehab MA, Hesham AH, Mohamed MH, Gihan FM. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng. 2016;91:317-332. DOI: 10.1016/j.ecoleng.2016.03.015.10.1016/j.ecoleng.2016.03.015Open DOISearch in Google Scholar

[73] Garza-Gonzalez MT, Alcalá-Rodríguez MM, Pérez-Elizondo R, Cerino-Córdova FJ, Garcia-Reyes RB, Loredo-Medrano JA. Artificial neural network for predicting biosorption of methylene blue by Spirulina sp. Water Sci Technol. 2011;63:977-983. DOI: 10.2166/wst.2011.279.10.2166/wst.2011.27921411949Open DOISearch in Google Scholar

[74] Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León AM, Soto-Regalado E, Davila-Guzman. NE, Salazar-Rabago JJ. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng. 2011;68:201-210. DOI: 10.1016/j.jtice.2016.08.038.10.1016/j.jtice.2016.08.038Open DOISearch in Google Scholar

[75] Marjan T, Seyyed Hossein H, Asieh DK, Martin O, Kianoush K, Reza R, Imran A. Artificial neural network optimization form ethyl orange adsorption ontopolyaniline nano-adsorbent: Kinetic, isotherm and thermodynamic studies. J Molec Liquids. 2017;244:189-200. DOI: 10.1016/j.molliq.2017.08.122.10.1016/j.molliq.2017.08.122Open DOISearch in Google Scholar

[76] Rezvan K, Fakhri Y, Mehrorang G, Kheibar D. Back propagation artificial neural network and central composite design modeling of operational parameter impact for sunset yellow and azur (II) adsorption onto MWCNT and MWCNT-Pd-NPs: Isotherm and kinetic study. Chemomet Intelligent Lab Systems. 2016;159:127-137. DOI: 10.1016/j.chemolab.2016.10.012.10.1016/j.chemolab.2016.10.012Open DOISearch in Google Scholar

[77] Maghsoudi M, Ghaedi M, Zinali A, Ghaedi AM, Habibi MH. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study. Spec Acta Part A: Molec Biomolec Spectr. 2015;134:1-9. DOI: 10.1016/j.saa.2014.06.106.10.1016/j.saa.2014.06.10624995412Open DOISearch in Google Scholar

eISSN:
1898-6196
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology