INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Sakunthala M, Sridevi V, Chadana Lakshmi MVV, Vijay Kumar K. A review: the description of three different biological filtration processes and economic evaluation. JECET. 2013;2:91-99. https://www.jecet.org/download_frontend.php?id=63&table=Archive.Search in Google Scholar

[2] Cheng Y, He H, Yang Ch, Zeng Ch, Li X, Chen H, Yu G. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol Adv. 2016;34;1091-1102. DOI: 10.1016j.biotechadv.2016.06.007.2737479010.1016/j.biotechadv.2016.06.007Search in Google Scholar

[3] Zdeb M, Lebiocka M. Microbial removal of selected volatile organic compounds from the model landfill gas. Ecol Chem Eng S. 2016;23:215-228. DOI: 10.1515/eces-2016-0014.10.1515/eces-2016-0014Open DOISearch in Google Scholar

[4] Świerczyńska A, Bohdziewicz J, Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng S. 2016;23:285-295.DOI: 10.1515/eces-2016-0020.10.1515/eces-2016-0020Open DOISearch in Google Scholar

[5] Ferdowsi M, Ramirez AA, Jones JP, Heitz M. Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review. Int Biodeter Biodegr. 2017;119;336-348. DOI: 10.1016/j.ibiod.2016.10.015.10.1016/j.ibiod.2016.10.015Open DOISearch in Google Scholar

[6] Federal Institute for Occupational Safety and Health Division for Chemicals and Biocides Regulation Vinyl Acetate - Summary Risk Assessment Report. Dortmund (Germany): 2008. https://echa.europa.eu/documents/10162/6434698/orats_summary_vinylacetate_en.pdf.Search in Google Scholar

[7] Vinyl Acetate Safe Handling Guide. Washington: Vinyl Acetate Council; 2010. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0916/0901b803809160d4.pdf?filepath=vam&fromPage=GetDoc.Search in Google Scholar

[8] http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+108-05-4).Search in Google Scholar

[9] Jakoby WB, Narrod SA. Aldehyde oxidation IV. An aldehyde buffer for growth studies. J Bacteriol. 1959;77:410-413. https://jb.asm.org/content/jb/77/4/410.full.pdf.10.1128/jb.77.4.410-413.1959Search in Google Scholar

[10] Simon P, Filser JG, Bolt HM. Metabolism of pharmacokinetics of vinyl acetate. Arch Toxicol. 1985;57:191-195. https://link.springer.com/content/pdf/10.1007/BF00290886.pdf.10.1007/BF00290886Search in Google Scholar

[11] Bogdanffy MS, Sarangapani R, Plowchalk DR, Jarabek A, Andersen ME. A biologically based risk assessment for vinyl acetate-induced cancer and noncancer toxicity. Toxicol Sci. 1999;51:19-35. DOI: 10.1093/toxsci/51.1.10.1093/toxsci/51.1Open DOISearch in Google Scholar

[12] Bogdanffy MS, Taylor ML. Kinetics of nasal carboxylesterase-mediated metabolism of vinyl acetate. Drug Metabol Dispos. 1993;21:1107-1111. http://dmd.aspetjournals.org/content/21/6/1107.short.Search in Google Scholar

[13] Morris JB, Symanowicz P, Sarangapani R. Regional distribution and kinetics of vinyl acetate hydrolysis in the oral cavity of the rat and mouse. Toxicol Lett. 2002;126:31-99. DOI: 10.1016/S0378-4274(01)00442-8.10.1016/S0378-4274(01)00442-8Open DOISearch in Google Scholar

[14] Hatanaka Y, Inoue Y, Murata K, Kimura A. A isolation and characterization of carboxylesterase from vinyl acetate-assimilating bacterium isolated from soil. J Ferment Bioeng. 1989;67:14-19. DOI: 10.1016/0922-338X(89)90079-2.10.1016/0922-338X(89)90079-2Open DOISearch in Google Scholar

[15] Nieder M, Sunarko B, Meyer O. Degradation of vinyl acetate by soil, sewage, sludge, and the newly isolated aerobic bacterium V2. Appl Environ Microbiol. 1990;56:3023-3028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184893/.10.1128/aem.56.10.3023-3028.19901848932285314Search in Google Scholar

[16] Lara-Mayorga I, Duran-Hinojosa U, Arana-Cuenca A, Monroy-Hermosillo O, Ramirez-Vives F. Vinyl acetate degradation by Brevibacillus agri isolates from a slightly aerated methanogenic reactor. Environ Technol. 2010;31:1-6. DOI: 10.1080/09593330903260904.10.1080/0959333090326090420232673Open DOISearch in Google Scholar

[17] Greń I, Gąszczak A, Guzik U, Bartelmus G, Łabużek S. A comparative study of biodegradation of vinyl acetate by environmental strains. Ann Microbiol. 2011;61:257-265. DOI: 10.1007/s13213-010-0130-4.10.1007/s13213-010-0130-4308882121654921Open DOISearch in Google Scholar

[18] Szczyrba E, Greń I, Bartelmus G. Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain. Folia Microbiol. 2014;59:99-105. DOI: 10.1007/s12223-013-0268-0.10.1007/s12223-013-0268-0393613323913099Open DOISearch in Google Scholar

[19] Moser A. Bioprocess Technology, Kinetics and Reactors. New York: Springer-Verlag; 1988. DOI: 10.1007/978-1-4613-8748-0.10.1007/978-1-4613-8748-0Open DOISearch in Google Scholar

[20] EPA On-line Tools for Site Assessment Calculation. http://www3.epa.gov/ceampubl/learn2model/part-two/onsite/esthenry.html.Search in Google Scholar

[21] Pirt SJ. The maintenance energy of bacteria in growing cultures. Proc R Soc London B. 1965;163: 224-231.10.1098/rspb.1965.00694378482Search in Google Scholar

[22] Schuler ML, Kargi F. Bioprocess Engineering. New Jersey: Prentice Hall, PTR; 2002. ISBN 9780130819086.Search in Google Scholar

[23] Takeuchi M, Weiss N, Schumann P, Yokota A. Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2, 4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol. 1996;4:967-971. DOI:10.1099/00207713-46-4-967.10.1099/00207713-46-4-9678863425Open DOISearch in Google Scholar

[24] Bakhshi Z, Najafpour G, Kariminezhad E, Pishgar R, Mousavi N, Taghizade T. Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environ Technol. 2011;32:1835-1841. DOI: 10.1080/09593330.2011.562925.10.1080/09593330.2011.56292522439571Open DOISearch in Google Scholar

[25] Singh RK, Kumar Sh, Kumar S, Kumar A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J. 2008;40:293-303. DOI: 10.1016/j.bej.2007.12.10.1016/j.bej.2007.12Open DOISearch in Google Scholar

[26] Agarry SE, Solomon BO. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescens. IJEST. 2008;5:223-232. http://www.bioline.org.br/pdf?st08026.10.1007/BF03326016Search in Google Scholar

[27] Sherrod PH. Nonlinear Regression Analysis Program (NLREG). Nashville: TN; 2010. www.nlreg.com.Search in Google Scholar

[28] Nweke CO, Okpokwasili GC. Kinetics of growth and phenol degradation by Pseudomonas species isolated from petroleum refinery wastewater. Int J Biosci. 2014;4:28-37. DOI: 10.12692/ijb/4.7.28-37.10.12692/ijb/4.7.28-37Open DOISearch in Google Scholar

[29] Molin G. Measurement of the maximum specific growth rate in chemostat of Pseudomonas spp. with different abilities for biofilm formation. Eur J Appl Microbiol Biotechnol. 1983;18:303-307. DOI: 10.1007/BF00500496.10.1007/BF00500496Open DOISearch in Google Scholar

[30] Hao O, Kim M, Seagren E, Kim H. Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere. 2002;46:797-807. DOI: 10.1016/S0045-6535(01)00182-5.10.1016/S0045-6535(01)00182-5Open DOISearch in Google Scholar

eISSN:
1898-6196
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology