Accesso libero

Analysis of Cigarette Smoke Deposition Within an In Vitro Exposure System for Simulating Exposure in the Human Respiratory Tract

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Church, D.F. and W.A. Pryor: Free-Radical Chemistry of Cigarette Smoke and its Toxicological Implications; Environ. Health Persp. 64 (1985) 111-126.Search in Google Scholar

2. Hoffmann, D. and E.L. Wynder: Chemical Constituents and Bioactivity of Tobacco Smoke; in: Tobacco: A Major Health Hazard, edited by D.G. Zardidze and R. Peto, IARC, Lyon, France, IARC Sci. Publ. No. 74 (1986) 145-165.Search in Google Scholar

3. Rodgman, A. and T.A. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke, Second Edition; CRC press, Boca Raton, FL, USA, 2013.Search in Google Scholar

4. Mizusaki, S., T. Takashima, and K. Tomaru: Factors Affecting Mutagenic Activity of Cigarette Smoke Condensate in Salmonella Typhimurium TA 1538; Mutat. Res. 48 (1977) 29-36.Search in Google Scholar

5. Nakayama, T., M. Kaneko, M. Kodama, and C.Search in Google Scholar

Nagata: Cigarette Smoke Induces DNA Singlestrand Breaks in Human Cells; Nature 314 (1985) 462-464.Search in Google Scholar

6. Andreoli, C., D. Gigante, and A. Nunziata: A Review of In Vitro Methods to Assess the Biological Activity of Tobacco Smoke With the Aim of Reducing the Toxicology of Smoke; Toxicol. In Vitro 17 (2003) 587-594Search in Google Scholar

7. Thorne, D. and J. Adamson: A Review of In Vitro Cigarette Smoke Exposure Systems; Exp. Toxicol. Pathol. 65 (2013) 1183-1193.Search in Google Scholar

8. Nara, H., Y. Fukano, T. Nishino, and M. Aufderheide: Detection of the Cytotoxicity of Water-Insoluble Fraction of Cigarette Smoke by Direct Exposure to Cultured Cells at an Air-Liquid Interface; Exp. Toxicol. Pathol. 65 (2013) 683-688.Search in Google Scholar

9. Fukano, Y., M. Ogura, K. Eguchi, M. Shibagaki, and M. Suzuki: Modified Procedure of a Direct In Vitro Exposure System for Mammalian Cells to Whole Cigarette Smoke; Exp. Toxicol. Pathol. 55 (2004) 317-323.Search in Google Scholar

10. Maunders, H., S. Patwardhan, J. Phillips, A. Clack, and A. Richter: Human Bronchial Epithelial Cell Transcriptome: Gene Expression Changes Following Acute Exposure to Whole Cigarette Smoke In Vitro; Am. J. Physiol. Lung Cell Mol. Physiol. 292 (2007) 1248-1256.Search in Google Scholar

11. Aufderheide, M. and H. Gressmann: Mutagenicity of Native Cigarette Mainstream Smoke and its Gas Vapour Phase by Use of Different Tester Strains and Cigarettes in a Modified Ames Assay; Mutat. Res. 656 (2008) 82-87.Search in Google Scholar

12. Scian, M.J., M.J. Oldham, D.B. Kane, J.S. Edmiston, and W.J. McKinney: Characterization of a Whole Smoke In Vitro Exposure System (Burghart Mimic Smoker-01); Inhal. Toxicol. 21 (2009) 234-243.Search in Google Scholar

13. Paur, H.R., F.R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W.G. Kreyling, O. Hänninen, G. Kasper, M. Riediker, B. Rothen- Rutishauser, and O. Schmid: In-Vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung-A Dialog Between Aerosol Science and Biology; J. Aerosol Sci. 42 (2011) 668-692.Search in Google Scholar

14. Okuwa, K., M. Tanaka, Y. Fukano, H. Nara, Y. Nishijima, and T. Nishino: In Vitro Micronucleus Assay for Cigarette Smoke Using a Whole Smoke Exposure System: A Comparison of Smoking Regimens; Exp. Toxicol. Pathol. 62 (2010) 433-440.Search in Google Scholar

15. Weber, S., M. Hebestreit, T. Wilms, L.L. Conroy, and G. Rodrigo: Comet Assay and Air-Liquid Interface Exposure System: A New Combination to Evaluate Genotoxic Effects of Cigarette Whole Smoke in Human Lung Cell Lines; Toxicol. In Vitro 27 (2013) 1987-1991.Search in Google Scholar

16. Thorne, D., J. Kilford, R. Payne, J. Adamson, K. Scott, A. Dalrymple, C. Meredith, and D. Dillon: Characterisation of a Vitrocell® VC 10 In Vitro Smoke Exposure System Using Dose Tools and Biological Analysis; Chem. Cent. J. 7 (2013) 146.Search in Google Scholar

17. Adamson, J., S. Hughes, D. Azzopardi, J. McAughey, and M.D. Gaça: Real-Time Assessment of Cigarette Smoke Particle Deposition In Vitro; Chem. Cent. J. 6 (2012) 98.Search in Google Scholar

18. Aufderheide, M., S. Scheffler, N. Möhle, B. Halter, and D. Hochrainer: Analytical In Vitro Approach for Studying Cyto- and Genotoxic Effects of Particulate Airborne Material; Anal. Bioanal. Chem. 401 (2011) 3213-3220.Search in Google Scholar

19. Steinritz, D., N. Möhle, C. Pohl, M. Papritz, B. Stenger, A. Schmidt, C.J. Kirkpatrick, H. Thiermann, R. Vogel, S. Hoffmann, and M. Aufderheide: Use of the Cultex® Radial Flow System as an In Vitro Exposure Method to Assess Acute Pulmonary Toxicity of Fine Dusts and Nanoparticles With Special Focus on the Intra- and Inter-Laboratory Reproducibility; Chem. Biol. Interact. 206 (2013) 479-490.Search in Google Scholar

20. Aufderheide, M., B. Halter, N. Möhle, and D. Hochrainer: The CULTEX RFS: A Comprehensive Technical Approach for the In Vitro Exposure of Airway Epithelial Cells to the Particulate Matter at the Air-Liquid Interface; Biomed Res. Int. (2013) DOI: 10.1155/2013/734137 Epub 2013 Feb 7.10.1155/2013/734137358113323509768Search in Google Scholar

21. Tang, H., G. Richards, C.L. Benner, J.P. Tuominen, M.L. Lee, E.A. Lewis, L.D. Hansen, and D.J. Eatough: Solanesol: A Tracer for Environmental Tobacco Smoke Particles; Environ. Sci. Technol. 24 (1990) 848-852.Search in Google Scholar

22. Benowitz, N.L.: Biomarkers of Environmental Tobacco Smoke Exposure; Environ. Health Perspect. 107 Suppl. 2 (1999) 349-355.Search in Google Scholar

23. Pankow, J.F.: A Consideration of the Role of Gas/ Particle Partitioning in the Deposition of Nicotine and Other Tobacco Smoke Compounds in the Respiratory Tract; Chem. Res. Toxicol. 14 (2001) 1465-1481.Search in Google Scholar

24. Baker, R.R.: The Generation of Formaldehyde in Cigarettes -- Overview and Recent Experiments; Food Chem. Toxicol. 44 (2006) 1799-1822.Search in Google Scholar

25. Adam, T., J. McAughey, C. McGrath, C. Mocker, and R. Zimmermann: Simultaneous On-Line Size and Chemical Analysis of Gas Phase and Particulate Phase of Cigarette Mainstream Smoke; Anal. Bioanal. Chem. 394 (2009) 1193-1203.Search in Google Scholar

26. Baker, R.R. and M. Dixon: The Retention of Tobacco Smoke Constituents in the Human Respiratory Tract; Inhal. Toxicol. 18 (2006) 255-294.Search in Google Scholar

27. International Organization for Standadarzation (ISO): ISO 3308:2012 - Routine Analytical Cigarette-Smoking Machine -- Definitions and Standard Conditions; ISO, Geneva, Switzerland, 2012.Search in Google Scholar

28. Health Canada: Official Method T-115 - Determination of “Tar”, Water, Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke; Health Canada, Ottawa, Canada, 1999.Search in Google Scholar

29. Armitage, A.K., M. Dixon, B.E. Frost, D.C. Mariner, and N.M. Sinclair: The Effect of Tobacco Blend Additives on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking; Chem. Res. Toxicol. 17 (2004) 537-544.Search in Google Scholar

30. Armitage, A.K., M. Dixon, B.E. Frost, D.C. Mariner, and N.M. Sinclair: The Effect of Inhalation Volume and Breath-Hold Duration on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking; Beitr. Tabakforsch. Int. 21 (2004) 240-249.Search in Google Scholar

31. Watson, C., J. McCraw, G. Polzin, D. Ashley, and D. Barr: Development of a Method to Assess Cigarette Smoke Intake; Environ. Sci. Technol. 38 (2004) 248-253.Search in Google Scholar

32. Feng, S., S.E. Plunkett, K. Lam, S. Kapur, R. Muhammad, Y. Jin, M. Zimmermann, P. Mendes, R. Kinser, and H.J. Roethig: A New Method for Estimating the Retention of Selected Smoke Constituents in the Respiratory Tract of Smokers During Cigarette Smoking; Inhal. Toxicol. 19 (2007) 169-179.Search in Google Scholar

33. West, J.B.: Respiratory Physiology: The Essentials; Lippincott Williams & Wilkins, Philadelphia, USA, 2012.Search in Google Scholar

34. Cooperation Center for Scientific Research Relative to Tobacco (CORESTA): CORESTA Recommended Method No 52: Environmental Tobacco Smoke - Estimation of its Contribution to Respirable Suspended Particles - Method Based on Solanesol Determination; Cooperation Centre for Scientific Research Relative to Tobacco, (2002) available at: http://www.coresta.org/Recommended_Methods/CRMs.htm (accessed January 2016).Search in Google Scholar

35. Moldoveanu, S.C., W. Coleman III, and J. Wilkins: Determination of Carbonyl Compounds in Exhaled Cigarette Smoke; Beitr. Tabakforsch. Int. 22 (2007) 346-357.Search in Google Scholar

36. International Commission on Radiological Protection (ICPR): ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection; Elsevier Health Sciences, 1994.Search in Google Scholar

37. Majeed, S., S. Frentzel, S. Wagner, D. Kuehn, P. Leroy, P.A. Guy, A. Knorr, J. Hoeng, and M.C. Peitsch: Characterization of the Vitrocell® 24/48 In Vitro Aerosol Exposure System Using Mainstream Cigarette Smoke; Chem. Cent. J. 8 (2014) 62 available at: http://www.http://journal.chemistrycentral.com/content/8/1/62 (accessed January 2016).10.1186/s13065-014-0062-3423645825411580Search in Google Scholar

38. Zhang, Z., C. Kleinstreuer, and Y. Feng: Vapor Deposition During Cigarette Smoke Inhalation in a Subject-Specific Human Airway Model; J. Aerosol Sci. 53 (2012) 40-60.Search in Google Scholar

39. Rostami, A.A.: Computational Modeling of Aerosol Deposition in Respiratory Tract: A Review; Inhal. Toxicol. 21 (2009) 262-290.Search in Google Scholar

40. Martonen, T.B. and C.J. Musante: Importance of Cloud Motion on Cigarette Smoke Deposition in the Lung; Inhal. Toxicol. 12 (2000) 261-280.Search in Google Scholar

41. Zhang, Z., C. Kleinstreuer, and S. Hyun: Size-Change and Deposition of Conventional and Composite Cigarette Smoke Particles During Inhalation in a Subject-Specific Airway Model; J. Aerosol Sci. 46 (2012) 34-52.Search in Google Scholar

42. Mathis, C., C. Poussin, D. Weisensee, S. Gebel, A. Hengstermann, A. Sewer, V. Belcastro, Y. Xiang, S. Ansari, S. Wagner, J. Hoeng, and M.C. Peitsch: Human Bronchial Epithelial Cells Exposed In Vitro to Cigarette Smoke at the Air-Liquid Interface Resemble Bronchial Epithelium From Human Smokers; Am. J. Physiol. Lung Cell Mol. Physiol. 304 (2013) 489-503.Search in Google Scholar

43. Iskandar, A.R., F. Martin, M. Talikka, W.K. Schlage, R. Kostadinova, C. Mathis, J. Hoeng, and M.C. Peitsch: Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues; Biomed Res. Int. 2013 (2013) available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808713/ (accessed January 2013)10.1155/2013/512086380871324224167Search in Google Scholar

44. Fukano, Y., H. Yoshimura, and T. Yoshida: Heme Oxygenase-1 Gene Expression in Human Alveolar Epithelial Cells (A549) Following Exposure to Whole Cigarette Smoke on a Direct In Vitro Exposure System; Exp. Toxicol. Pathol. 57 (2006) 411-418. Search in Google Scholar

eISSN:
1612-9237
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
General Interest, Life Sciences, other, Physics