Accesso libero

Comparison of a mobile application to estimate percentage body fat to other non-laboratory based measurements

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Andreoli A., Garaci F., Cafarelli F.P., Guglielmi G. (2016) Body composition in clinical practice. Eur. J. Radiol., 85: 1461-1468. DOI: 10.1016/j.ejrad.2016.02.005.10.1016/j.ejrad.2016.02.00526971404Search in Google Scholar

2. Atkinson G., Nevill A.M. (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med., 26: 217-238. DOI: 10.2165/00007256-199826040-00002.10.2165/00007256-199826040-000029820922Search in Google Scholar

3. Colantonio E., Dâmaso A.R., Caranti D.A., Pinheiro M.M., Tufik S., Mello M.T.d. (2015) Clinical performance of 3-body fat measurements in obese adolescents 15 to 18 years-old. Rev. Bras. Med., 72: 77-82.Search in Google Scholar

4. Gholi Z., Heidari-Beni M., Feizi A., Iraj B., Askari G. (2016) The characteristics of pre-diabetic patients associated with body composition and cardiovascular disease risk factors in the Iranian population. J. Res. Med. Sci., 21: 1-6. DOI: 10.4103/1735-1995.179888.10.4103/1735-1995.179888512224827904566Search in Google Scholar

5. Gore C. (2000) Quality assurance in exercise physiology laboratories. Physiological testing for elite athletes (Australian Sports Commission). Human Kinetics, Champaign.Search in Google Scholar

6. Habibi E., Soury S., Zadeh A.H. (2013) Precise evaluation of anthropometric 2D software processing of hand in comparison with direct method. J. Med. Signals Sensors, 3: 256-261.10.4103/2228-7477.128338Search in Google Scholar

7. Hung P.C.-Y., Witana C.P., Goonetilleke R.S. (2004) Anthropometric measurements from photographic images. Computing Systems, 29: 764-769.Search in Google Scholar

8. Hussain Z., Jafar T., uz Zaman M., Parveen R., Saeed F. (2014) Correlations of skin fold thickness and validation of prediction equations using DEXA as the gold standard for estimation of body fat composition in Pakistani children. BMJ Open, 4: e004194. DOI: 10.1136/bmjopen-2013-004194.10.1136/bmjopen-2013-004194401086024755209Search in Google Scholar

9. Jackson A.S., Pollock M.L. (1978) Generalized equations for predicting body density of men. Brit. J. Nutr., 40: 497-504.Search in Google Scholar

10. Jackson A.S., Pollock M.L., Ward A. (1979) Generalized equations for predicting body density of women. Med. Sci. Sport Exerc., 12: 175-181.Search in Google Scholar

11. Kälvesten J., Lui L.-Y., Brismar T., Cummings S. (2016) Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX. Bone, 86: 30-35. DOI: 10.1016/j.bone.2016.02.011.10.1016/j.bone.2016.02.011483367026921822Search in Google Scholar

12. Karlen W., Garde A., Myers D., Scheffer C., Ansermino J.M., Dumont G.A. (2015) Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry. IEEE J. Biomed. Health Informatics, 19: 1331-1338. DOI: 10.1109/JBHI.2015.2429746.10.1109/JBHI.2015.242974625955999Search in Google Scholar

13. Loenneke J.P., Barnes J.T., Wilson J.M., Lowery R.P., Isaacs M.N., Pujol T.J. (2013) Reliability of field methods for estimating body fat. Clin. Physiol. Funct. Imaging, 33: 405-408. DOI: 10.1111/cpf.12045.10.1111/cpf.1204523701358Search in Google Scholar

14. Lowry D.W., Tomiyama A.J. (2015) Air displacement plethysmography versus dual-energy x-ray absorptiometry in underweight, normal-weight, and overweight/ obese individuals. PloS one. DOI: 10.1371/journal.pone.0115086.10.1371/journal.pone.0115086430186425607661Search in Google Scholar

15. Macfarlane D.J. (2007) Can bioelectric impedance monitors be used to accurately estimate body fat in Chinese adults? Asia Pacific J. Clin. Nutr., 16: 66-73.Search in Google Scholar

16. Mazzoccoli G. (2016) Body composition: Where and when. Eur. J. Radiol., 85: 1456-1460.Search in Google Scholar

17. Moon J. (2013) Body composition in athletes and sports nutrition: An examination of the bioimpedance analysis technique. Eur. J. Clin. Nutr., 67: S54-S59. DOI: 10.1038/ejcn.2012.165.10.1038/ejcn.2012.16523299872Search in Google Scholar

18. Ng B., Hinton B., Fan B., Kanaya A., Shepherd J. (2016) Clinical anthropometrics and body composition from 3D whole-body surface scans. Eur. J. Clin. Nutr., in press. DOI: 10.1038/ejcn.2016.109.10.1038/ejcn.2016.109546616927329614Search in Google Scholar

19. Ockendon M., Gilbert R.E. (2012) Validation of a novel smartphone accelerometer-based knee goniometer. J. Knee Surgery, 25: 341-346. DOI: 10.1055/s-0031-129966910.1055/s-0031-129966923150162Search in Google Scholar

20. Oeffinger D.J., Gurka M.J., Kuperminc M., Hassani S., Buhr N., Tylkowski C. (2014) Accuracy of skinfold and bioelectrical impedance assessments of body fat percentage in ambulatory individuals with cerebral palsy. Dev. Med. Child Neurol., 56: 475-481. DOI: 10.1111/dmcn.12342.10.1111/dmcn.1234224344745Search in Google Scholar

21. Otter S.J., Agalliu B., Baer N., Hales G., Harvey K., James K., Keating R., McConnell W., Nelson R., Qureshi S. (2015) The reliability of a smartphone goniometer application compared with a traditional goniometer for measuring first metatarsophalangeal joint dorsiflexion. J. Foot Ankle Res., 8: 1. DOI: 10.1186/s13047-015-0088-3.10.1186/s13047-015-0088-3451201826207142Search in Google Scholar

22. Peart D.J., Shaw M.P., Rowley C.G. (2014) Validity of freely available mobile applications for recording resting heart rate. Ann. Biol. Res., 5: 11-15.Search in Google Scholar

23. Peart D.J., Shaw M.P., Rowley C.G. (2015) An investigation into a contactless photoplethysmographic mobile application to record heart rate post-exercise: Implications for field testing. Biomed. Hum. Kinet., 7: 95-99. DOI: 10.1515/bhk-2015-0015.10.1515/bhk-2015-0015Search in Google Scholar

24. Reyes B., Reljin N., Kong Y., Nam Y., Chon K. (2016) Tidal volume and instantaneous respiration rate estimation using a smartphone camera. IEEE J. Biomed. Health Informatics, 2168-2194. DOI: 10.1109/JBHI.2016.2532876.10.1109/JBHI.2016.253287626915142Search in Google Scholar

25. Siri W. (1956) The gross composition of the body; In: Lawrence J.H., Tobias C.S. (eds): Biological and Medical Physics. New York, Academic Press.10.1016/B978-1-4832-3110-5.50011-X13354513Search in Google Scholar

26. Tompuri T.T., Lakka T.A., Hakulinen M., Lindi V., Laaksonen D.E., Kilpeläinen T.O., Jääskeläinen J., Lakka H.M., Laitinen T. (2015) Assessment of body composition by dual‐energy X‐ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study. Clin. Pysiol. Funct. Imaging, 35: 21-33. DOI: 10.1111/cpf.12118.10.1111/cpf.1211824325400Search in Google Scholar

27. Weir J.P. (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res., 19: 231-240. DOI: 10.1519/15184.1.10.1519/15184.115705040Search in Google Scholar

28. Willis L.H., Slentz C.A., Bateman L.A., Shields A.T., Piner L.W., Bales C.W., Houmard J.A., Kraus W.E. (2012) Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol., 113: 1831-1837. DOI: 10.1152/japplphysiol.01370.201110.1152/japplphysiol.01370.2011354449723019316Search in Google Scholar

eISSN:
2080-2234
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education