Accesso libero

Flow Cytometry Assessment of Bacterial and Yeast Induced Oxidative Burst in Peripheral Blood Phagocytes

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 2005 Feb 18,56(2):397-415.10.1111/j.1365-2958.2005.04557.x15813733Search in Google Scholar

2. Gille C, Leiber A, Mundle I, Spring B, Abele H, Spellerberg B, et al. Phagocytosis and postphagocytic reaction of cord blood and adult blood monocyte after infection with green fluorescent protein-labeled Escherichia coli and group B Streptococci. Cytom Part B - Clin Cytom 2009,76(4):271-84.10.1002/cyto.b.2047419288547Search in Google Scholar

3. Martin E, Bhakdi S. Flow cytometric assay for quantifying opsonophagocytosis and killing of Staphylococcus aureus by peripheral blood leukocytes. J Clin Microbiol 1992,30(9):2246-55.10.1128/jcm.30.9.2246-2255.19922654871400987Search in Google Scholar

4. Wellington M, Dolan K, Krysan DJ. Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect Immun 2009 Jan,77(1):405-13.10.1128/IAI.00860-08261224218981256Search in Google Scholar

5. Schuit KE. Phagocytosis and intracellular killing of pathogenic yeasts by human monocytes and neutrophils. Infect Immun 1979,24(3):932-8.10.1128/iai.24.3.932-938.1979414397381207Search in Google Scholar

6. Destin KG, Linden JR, Laforce-Nesbitt SS, Bliss JM. Oxidative burst and phagocytosis of neonatal neutrophils confronting Candida albicans and Candida parapsilosis. Early Hum Dev 2009 Aug,85(8):531-5.10.1016/j.earlhumdev.2009.05.011275242219481378Search in Google Scholar

7. Martin E, Bhakdi S. Quantitative analysis of opsonophagocytosis and of killing of Candida albicans by human peripheral blood leukocytes by using flow cytometry. J ClinMicrobiol 1991,29(0095-1137 SB-IM):2013-23.10.1128/jcm.29.9.2013-2023.19912702511774329Search in Google Scholar

8. Salih HR, Husfeld L, Adam D. Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms. Eur Soc Clin Infect Dis 2000,6:251-8.10.1046/j.1469-0691.2000.00076.x11168121Search in Google Scholar

9. Vitro I, Medical D, Conformity E. Instructions PHAGOBURSTTM Version 04/09 page 1 of 9. :1-9.Search in Google Scholar

10. Grumach AS, Ceccon ME, Rutz R, Fertig A, Kirschfink M. Complement profile in neonates of different gestational ages. Scand J Immunol 2014,79(4):276-81.10.1111/sji.1215424460650Search in Google Scholar

11. Yan M, Jacobs P, Wood B, Jevremovic D, Marie CB, Nancy D, et al. Validation of Cell-based Fluorescence Assays : Practice Guidelines from the ICSH and ICCS - Part V - Assay Performance Criteria n e. 2013,323(May):315-23.10.1002/cyto.b.2110824022854Search in Google Scholar

12. O’Hara DM, Xu Y, Liang Z, Reddy MP, Wu DY, Litwin V. Recommendations for the validation of flow cytometric testing during drug development: II assays. J Immunol Methods 2011 Jan,363(2):120-34.10.1016/j.jim.2010.09.03620946898Search in Google Scholar

13. Wang L, Gaigalas AK, Marti G, Abbasi F, Hoffman RA. Toward quantitative fluorescence measurements with multicolor flow cytometry. Cytom Part A 2008 Apr,73A(4):279-88.10.1002/cyto.a.2050718163471Search in Google Scholar

14. Barnett D, Granger V, Kraan J, Whitby L, Reilly JT, Papa S, et al. Reduction of intra- and interlaboratory variation in CD34+ stem cell enumeration using stable test material, standard protocols and targeted training. Br J Haematol 2000 Mar,108(4):784-92.10.1046/j.1365-2141.2000.01932.x10792284Search in Google Scholar

15. Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies. Front Microbiol 2015,6(JUN):1-18.10.3389/fmicb.2015.00625448522426175718Search in Google Scholar

16. Cheng SC, Joosten LAB, Kullberg BJ, Netea MG. Interplay between Candida albicans and the mammalian innate host defense. Infect Immun 2012,80(4):1304-13.10.1128/IAI.06146-11331840722252867Search in Google Scholar

17. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013,4(2):119-28.10.4161/viru.22913365461023302789Search in Google Scholar

18. Brown AJP, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, et al. Stress adaptation in a pathogenic fungus. J Exp Biol 2014,217(Pt 1):144-55.10.1242/jeb.088930386749724353214Search in Google Scholar

19. Miramón P, Kasper L, Hube B. Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013 Jun 25,202(3):183-95.10.1007/s00430-013-0288-z23354731Search in Google Scholar

20. Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 2009,71(1):240-52.10.1111/j.1365-2958.2008.06528.x271385619019164Search in Google Scholar

21. Lopez CM, Wallich R, Riesbeck K, Skerka C, Zipfel PF, Soloviev D. Candida albicans Uses the Surface Protein Gpm1 to Attach to Human Endothelial Cells and to Keratinocytes via the Adhesive Protein Vitronectin. Stevenson B, editor. PLoS One 2014 Mar 13,9(3):e90796.10.1371/journal.pone.0090796395320724625558Search in Google Scholar

22. Gazendam RP, Hamme JL Van, Tool ATJ, Houdt M Van, Verkuijlen PJJH, Herbst M, et al. Two independent killing mechanisms of Candida albicans by human neutrophils : evidence from innate immunity defects. 2017,124(4):590-8.Search in Google Scholar

eISSN:
2247-6113
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other