Accesso libero

Review. Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Yang GK, Jooyen C, Srinivasan C. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156-1160.10.1073/pnas.93.3.1156400488577732Search in Google Scholar

2. Carroll D, Charo RA. The societal opportunities and challenges of genome editing. Genome Biology. 2015;16(1):1-9.10.1186/s13059-015-0812-0463474026537374Search in Google Scholar

3. Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet. 2016;53:91-97.10.1136/jmedgenet-2015-10340926673779Search in Google Scholar

4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429-5433.10.1128/jb.169.12.5429-5433.19872139683316184Search in Google Scholar

5. Makarova SK, Haft DH, Barrangou R. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467-477.10.1038/nrmicro2577338044421552286Search in Google Scholar

6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.10.1126/science.1225829628614822745249Search in Google Scholar

7. Lokody I. Correcting genetic defects with CRISPR-Cas9. Nat Rev Genet. 2014; 15:63.10.1038/nrg365624342922Search in Google Scholar

8. Burgess JD. In vivo correction of genetic disease in adult mice. Nat Rev Genet. 2014; 15:291.10.1038/nrg3731Search in Google Scholar

9. Burgess JD. Technology: A CRISPR genome-editing tool. Nat Rev Genet. 2013;14: 80-81.Search in Google Scholar

10. Blake W, Esther VD, Jelle BB, el al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS. 2011;108(25): 10092-10097.10.1073/pnas.1102716108312184921536913Search in Google Scholar

11. Josiane EG, Marie-E`ve D, Manuela V, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468: 67-72.10.1038/nature0952321048762Search in Google Scholar

12. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130-143.Search in Google Scholar

13. Ledford H. Alternative CRISPR system could improve genome editing. Nature. 2015; 526:17.10.1038/nature.2015.1843226432219Search in Google Scholar

14. Bernd Z, Jonathan SG, Omar OA. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015;163(3):759-771.10.1016/j.cell.2015.09.038463822026422227Search in Google Scholar

15. Lander ES. The Heroes of CRISPR. Cell. 2016;164(1-2):18-28.10.1016/j.cell.2015.12.04126771483Search in Google Scholar

16. CRISPR-Cpf1 May Outsnip CRISPR-Cas9. GEN News Highlights. http://www.genengnews.com/gen-news-highlights/crispr-cpf1-mayoutsnip-crispr-cas9/81251791/. [ accessed 26.Feb.2015].Search in Google Scholar

17. Scientists discover new system for human genome editing with potential to increase power and precision of genome engineering. Broadinstitute News. https://www.broadinstitute.org/news/7272. [accessed 23.Feb.2016].Search in Google Scholar

18. Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med. 2012;18, 618-623.Search in Google Scholar

19. Gerald S, Koo BK, Sasselli V. Functional Repair of CFTR by CRISPR/ Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell. 2013;13(6): 653-658.Search in Google Scholar

20. Patrick DH, Eric SL. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell. 2014;157(6): 1262-1278.10.1016/j.cell.2014.05.010434319824906146Search in Google Scholar

21. U.S National Library of Medicine. Huntington disease. Genetic Home Reference. https://ghr.nlm.nih.gov/condition/huntington-disease. 3 May 2016. [accessed 10.04.2016].Search in Google Scholar

22. U.S National Library of Medicine. HTT Huntington. Genetic Home Reference. https://ghr.nlm.nih.gov/gene/HTT. 3 May 2016. [accessed 10.04.2016].Search in Google Scholar

23. Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014;11(7):705-706.10.1038/nmeth.301524972169Search in Google Scholar

24. Li HL, Gee P, Ishida K, Hotta A. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods. 2015;101:27-35.Search in Google Scholar

25. Rajat M, Kiran M. Expanding the genetic editing tool kit: ZNFs, TALENs and CRISPR-Cas 9. The Journal of Clinical Investigation. 2014;124(10):4154-4161.10.1172/JCI72992419104725271723Search in Google Scholar

26. Sara R, Federica U, Melanie H,et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat. Cell Biol. 2012;14: 911-923.Search in Google Scholar

27. Brennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2012;473: 221-225.10.1038/nature09915339296921490598Search in Google Scholar

28. Kannan R, Ventura A. The CRISPR revolution and its impact on cancer research. Swiss Med Wkly. 2015;145:w14230.10.4414/smw.2015.14230551243226661454Search in Google Scholar

29. Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. Crispr-cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer. 2016;138:6;1328-1336.10.1002/ijc.2962626044706Search in Google Scholar

30. Randall J, Sidi C, Yang Z, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014;159;440-455.10.1016/j.cell.2014.09.014426547525263330Search in Google Scholar

31. Hu Z, Yu L, Zhu D, et al. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells. Biomed Res Int. 2014; Article ID:612823.10.1155/2014/612823412725225136604Search in Google Scholar

32. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Letters. 2016;373(1):109-118.10.1016/j.canlet.2016.01.030477267526806808Search in Google Scholar

33. Wen WS, Yuan ZY, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer. 2016;138(6):1328-36.10.1002/ijc.2962626044706Search in Google Scholar

34. Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.Oncotarget. 2016. DOI: 10.18632/ oncotarget.14072.10.18632/oncotarget.14072535473828030843Search in Google Scholar

35. Kim E, Hurtz C, Koehrer S, et al. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood. 2016. doi.org/10.1182/blood-2016-06-722900.10.1182/blood-2016-06-722900537473228031181Search in Google Scholar

36. Huibin T, Joseph BS. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO. 2016;8(2):83-85.Search in Google Scholar

37. Xun LX, Leqiang S, Teng Y, et al. A CRISPR/Cas9 and Cre/Lox systembased express vaccine development strategy against reemerging Pseudorabies virus. Sci Rep. 2016; 6:19176.10.1038/srep19176472603626777545Search in Google Scholar

38. Money of the genes: CRISPR attracts a lot of investors. News & Tips. 2016. http://allcompanies.website/2016/01/25/money-of-the-genescrispr-attracts-a-lot-of-investors/. [accesed 13.02.2016].Search in Google Scholar

39. Wang G, Zhao N, Berkhout B, Das AT, et al. A Combinatorial CRISPRCas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures. Cell Rep. 2016;17(11):2819-2826.10.1016/j.celrep.2016.11.05727974196Search in Google Scholar

40. Edward AP, Ryan BP, Benjamin JF, Jeffrey SG, Aijaz A, Robert GG. Future Therapy for Hepatitis B Virus: Role of Immunomodulators. Curr Hepatol Rep. 2016;15(4):237-244.10.1007/s11901-016-0315-9511229427917363Search in Google Scholar

41. Zhengyan F, Botao Z, Wona D, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013; 23:1229-1232.10.1038/cr.2013.114379023523958582Search in Google Scholar

42. Mercx S, Tollet J, Magy B, Navarre C, Boutry M. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cell. Front Plant Sci. 7:40. doi: 10.3389/fpls.2016.00040 http://dx.doi.org/10.3389/fpls.2016.00040. [accesed 01.02.2016].Search in Google Scholar

43. Lombardo L, Coppola G, Zelasco S. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends Biotechnol. 2016;34(1):49-57.10.1016/j.tibtech.2015.10.00626620971Search in Google Scholar

44. Ain QU, Chung JY, Kim JH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120-127.10.1016/j.jconrel.2014.12.03625553825Search in Google Scholar

45. Bing S, Liz HM, Yi G, Ying P. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int. 2016;Volume 2016:17 pages. Article ID 8140168: doi:10.1155/2016/8140168.Search in Google Scholar

46. Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/ Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014; 24:132-141.10.1101/gr.162339.113387585424253446Search in Google Scholar

47. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Lett. 2016;373(1):109-118.10.1016/j.canlet.2016.01.030477267526806808Search in Google Scholar

48. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84-88.10.1126/science.aad5227471494626628643Search in Google Scholar

49. Julie S, Jonathan W, David G. Opposition mounts to genetic modification of human embryos. http://mobile.reuters.com/article/healthNews/idUSKBN0TK33F20151201. [accesed 10.02.2016].Search in Google Scholar

50. Puping L, Yanwen X, Xiya Z et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell. 2015; 6(5):363-372.10.1007/s13238-015-0153-5441767425894090Search in Google Scholar

51. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380-384.10.1038/nature13589419993725119044Search in Google Scholar

52. Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014:159(2):440-450.10.1016/j.cell.2014.09.014426547525263330Search in Google Scholar

53. Lu XJ, Qi X, Zheng DH, Ji LJ. Modeling cancer processes with CRISPRCas9. Trends Biotechnol. 2015;33:317-319.10.1016/j.tibtech.2015.03.00725908505Search in Google Scholar

54. Katerine S, Michael B, Annelien B, et al. CRISPR germline engineering - the community speaks. Nature Biotechnology. 2015; 33:478-486.10.1038/nbt.322725965754Search in Google Scholar

55. Ewen C. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530,18-19.10.1038/nature.2016.1927026842037Search in Google Scholar

56. Yanfang F, Jennifer AF, Cyd K. High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822-826.10.1038/nbt.2623377302323792628Search in Google Scholar

57. Roni A. UNESCO panel of experts calls for ban on “editing” of human DNA to avoid unethical tampering with hereditary traits. UNESCO Media Service. 10 May 2016. Search in Google Scholar

eISSN:
2247-6113
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other