INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Badescu V. (2015), Optimal profiles for one dimensional slider bearings under technological constraints, Tribology International, 90, 198-216.10.1016/j.triboint.2015.04.023Search in Google Scholar

2. Cao H, Zhang X., Chen X. (2017), The concept and progress of intelligent spindles: A review, International Journal of Machine Tools and Manufacture, 112, 21-52.10.1016/j.ijmachtools.2016.10.005Search in Google Scholar

3. Chasalevris A., Dohnal F. (2016), Improving stability and operation of turbine rotors using adjustable journal bearings, Tribology International, 104, 369-382.10.1016/j.triboint.2016.06.022Search in Google Scholar

4. Diaz N., Redelsheimer E., Dornfeld D. (2011), Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use, Sustainability in Manufacturing. Energy Efficiency in Machine Tools, 263-267.Search in Google Scholar

5. EC - 7th Framework Programme. Challenge 6: ICT for Mobility, Environmental Sustainability and Energy Efficiency. Deliverable D3.3: “Design for energy efficiency” (2013), Estomad Project.Search in Google Scholar

6. Fedorynenko D., Boyko S., Sapon S. (2015), The search of the spatial functions of pressure in adjustable hydrostatic radial bearing, Acta Mechanica et Automatica, 9(1), 23-26.10.1515/ama-2015-0005Search in Google Scholar

7. Fedorynenko D., Boyko S., Sapon S. (2016), Accuracy of spindle units with hydrostatic bearings, Acta Mechanica et Automatica, 10(2), 117-124.10.1515/ama-2016-0019Open DOISearch in Google Scholar

8. Fedorynenko D., Sapon S. (2016), Spindle Hydrostatic Bearings (in Ukrainian), ChNUT.Search in Google Scholar

9. Fedorynenko D., Sapon S., Habibulina A. (2014), Adjustable Journal Hybrid Fluid Bearing, Patent of Ukraine No 89288.Search in Google Scholar

10. Grossmann K. (2015), Thermo-energetic Design of Machine Tools, Springer International Publishing.Search in Google Scholar

11. Huang P., Lee W., Chan C. (2016), Investigation on the position drift of the axis average line of the aerostatic bearing spindle in ultra-precision diamond turning, International Journal of Machine Tools and Manufacture, 108, 44-51.10.1016/j.ijmachtools.2016.05.001Search in Google Scholar

12. Mahner M, Lehn A., Schweizer B. (2016), Thermogas- and thermo-hydrodynamic simulation of thrust and slider bearings: Convergence and efficiency of different reduction approaches, Tribology International, 93, 539-554.10.1016/j.triboint.2015.02.030Search in Google Scholar

13. Nakao Y., Mimura M., Kobayashi F. (2012), Water energy drive spindle supported by water hydrostatic bearing for ultra-precision machine tool, http://www.researchgate.net/publication/228896125.Search in Google Scholar

14. Perovic B. (2012), Hydrostatic guides and bearings: basic principles, calculation and design of hydraulic diagrams (in German), Springer-Verlag Berlin Heidelberg.Search in Google Scholar

15. Pfefferkorn F., Lei S., Jeon Y., Haddad G. (2009), A metric for defining the energy efficiency of thermally assisted machining, International Journal of Machine Tools and Manufacture, 49, 357-365.10.1016/j.ijmachtools.2008.12.009Search in Google Scholar

16. Rowe W.B. (2012), Hydrostatic, aerostatic and hybrid bearing design, Butterworth-Heinemann Press.Search in Google Scholar

17. Salazara J, Santosa I. (2017), Active tilting-pad journal bearings supporting flexible rotors: Part I – The hybrid lubrication, Tribolo-gy International, 107, 94-105.10.1016/j.triboint.2016.11.018Search in Google Scholar

18. Singh V., Venkateswara Rao P., Ghosh S. (2012), Development of specific grinding energy model, International Journal of Machine Tools and Manufacture, 60, 1-13.10.1016/j.ijmachtools.2011.11.003Search in Google Scholar

19. Takabi J., Khonsari M. (2015), On the thermally-induced seizure in bearings: A review, Tribology International, 90, 118-130.10.1016/j.triboint.2015.05.030Search in Google Scholar

20. Tsybulia S., Fedorynenko D., Kostenko I., Buialska N. (2011), Corrosion Protection of Elements of Spindle Hydrostatic Bearing of Machine Tools (in Ukrainian), Materials of the XI International Conference: Efficiency Implementation of Scientific, Resource and Industrial Facilities in Modern Terms, Kyiv.Search in Google Scholar

21. Wardle F. (2015), Ultra Precision Bearings, Elsevier.Search in Google Scholar

22. Zahedi A., Tawakoli T, Akbari J. (2015), Energy aspects and work-piece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina–zirconia ceramics, International Journal of Machine Tools and Manufacture, 90, 16-28.10.1016/j.ijmachtools.2014.12.002Search in Google Scholar

23. Zuo X., Wang J., Yin Z., Li S. (2013), Comparative performance analysis of conical hydrostatic bearings compensated by variable slot and fixed slot, Tribology International, 66, 83-92.10.1016/j.triboint.2013.04.013Search in Google Scholar

24. http://hyprostatik.de/fileadmin/inhalte/pdfs/hydrostatic_spindles.pdfSearch in Google Scholar