Accesso libero

Bias Drift Estimation for MEMS Gyroscope Used in Inertial Navigation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Acosta Calderon C.A., Mohan E.R., Ng B.S. (2015), Development of a hospital mobile platform for logistics tasks, Digital Communications and Networks, 1 (2), 102-111.10.1016/j.dcan.2015.03.001Search in Google Scholar

2. Allan D.W. (1966), Statistics of atomic frequency standards, Proceedings of the IEEE, 54 (2), 221-230.10.1109/PROC.1966.4634Search in Google Scholar

3. Barrett J.M. (2014), Analyzing and Modeling Low-Cost MEMS IMUs for use in an Inertial Navigation System, Worcester Polytechnic Institute.Search in Google Scholar

4. Chatterjee G., Latorre L., Mailly F., Nouet P., Hachelef N., Oueda C. (2015), Smart-MEMS based inertial measurement units: gyro-free approach to improve the grade, Microsystem Technologies, 1-1010.1109/DTIP.2015.7160966Search in Google Scholar

5. Enberg D. (2015), Performance Evaluation of Short Time Dead Reckoning for Navigation of an Autonomous Vehicle, Department of Electrical Engineering, Linköpings universitetSearch in Google Scholar

6. Fang L., Antsaklis P.J., Montestruque L.A., McMickell M.B., Lemmon M., Sun Y., Fang H., Koutroulis I., Haenggi M., Xie M., Xie X. (2005) Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience, IEEE Trans Instrum Meas, 54, 2342-2358.10.1109/TIM.2005.858557Search in Google Scholar

7. Ferraina M. (2015), L3GD20H: 3-axis digital output gyroscope, STMicroelectronics, DocID026442 Rev 2Search in Google Scholar

8. Fuchs C., Aschenbruck N., Martini P., Wieneke M (2011), Indoor tracking for mission critical scenarios: A survey, Pervasive and Mobile Computing, 7 (1), 1-15.10.1016/j.pmcj.2010.07.001Search in Google Scholar

9. Ganesharajah T., Hall N.G., Sriskandarajah C. (1988), Design and operational issues in AGV-served manufacturing systems, Annals of Operations Research, 76 (0), 109-154.10.1023/A:1018936219150Search in Google Scholar

10. Gersdorf B., Freese U. (2013), A Kalman Filter for Odometry using a Wheel Mounted Inertial Sensor, ICINCO, 1, 388-395.Search in Google Scholar

11. Guizzo E. (2008), Three Engineers, Hundreds of Robots, One Warehouse, IEEE Spectrum, 45(7), 26-34.10.1109/MSPEC.2008.4547508Search in Google Scholar

12. Harle R. (2013), A Survey of Indoor Inertial Positioning Systems for Pedestrians, IEEE Communications Surveys & Tutorials, 15(3), 1281-1293.10.1109/SURV.2012.121912.00075Search in Google Scholar

13. Hedberg E., Hammar M. (2015), Train Localization and Speed Estimation Using On-Board Inertial and Magnetic Sensors, Department of Electrical Engineering, Linköpings universitetSearch in Google Scholar

14. Herrero-Perez D., Jose J., Martinez-Barbera H. (2013), An Accurate and Robust Flexible Guidance System for Indoor Industrial Environments, International Journal of Advanced Robotic Systems, 10 (1), 1-910.5772/56478Search in Google Scholar

15. Hyyti H., Visala A. (2015), A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs, International Journal of Navigation & Observation, 2015, 1–18.10.1155/2015/503814Search in Google Scholar

16. Ijaz F., Yang H.K., Ahmad A.W., Lee C. (2013), Indoor positioning: A review of indoor ultrasonic positioning systems, Advanced Communication Technology (ICACT), 2013 15th International Conference, 1146-1150.Search in Google Scholar

17. Institute of Electrical and Electronics Engineers (2004), IEEE standard specification format guide and test procedure for coriolis vibratory gyros, Institute of Electrical and Electronics Engineers, New York.Search in Google Scholar

18. Jiang C., Xue L., Chang H., Yuan W. (2012), Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling, Sensors, 12(12), 172-1737.10.3390/s120201720330413622438734Search in Google Scholar

19. Lee S.-Y., Yang H.-W. (2012), Navigation of automated guided vehicles using magnet spot guidance method, Robotics and Computer-Integrated Manufacturing, 28(3), 425-436.10.1016/j.rcim.2011.11.005Search in Google Scholar

20. Mautz R. (2009), Overview of current indoor positioning systems, Geodesy and Cartography, 35(1), 18-22.10.3846/1392-1541.2009.35.18-22Search in Google Scholar

21. Mountz M.C. (2005), Material handling system and method using mobile autonomous inventory trays and peer-to-peer communications, US/6950722Search in Google Scholar

22. Romaniuk S. Gosiewski Z. (2014), Kalman Filter Realization for Orientation and Position Estimation on Dedicated Processor, Acta Mechanica et Automatica, 8(2), 88-9410.2478/ama-2014-0016Search in Google Scholar

23. Scarlett J. (2007), Enhancing the performance of pedometers using a single accelerometer, Application Note, Analog Devices, AN-900Search in Google Scholar

24. STMicroelectronics (2013), MEMS motion sensor: three-axis digital output gyroscope L3GD20H Datasheet.Search in Google Scholar

25. Thielman L.O., Bennett S., Barker C.H., Ash M.E. (2002), Proposed IEEE Coriolis Vibratory Gyro standard and other inertial sensor standards, Position Location and Navigation Symposium, 2002 IEEE, 351-358.Search in Google Scholar

26. Weinberg H. (2011), Gyro mechanical performance: The most important parameter, Technical Article MS-2158, Analog DevicesSearch in Google Scholar

27. Yuan Q., Chen I.-M. (2014), Localization and velocity tracking of human via 3 IMU sensors, Sensors & Actuators: A. Physical, 212, 25-33.Search in Google Scholar

28. Zhang R., Bannoura A., Hoflinger F., Reindl L.M., Schindelhauer C. (2013), Indoor localization using a smart phone, Sensors Applications Symposium (SAS), 2013 IEEE, 38–42.Search in Google Scholar