Accesso libero

Antifungal and antiaflatoxigenic activities of coumarinyl thiosemicarbazides against Aspergillus flavus NRRL 3251



1. Degola F, Morcia C, Bisceglie F, Mussi F, Tumino G, Ghizzoni R, Pelosi G, Terzi V, Buschini A, Restivo FM, Lodi T. In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals. Int J Food Microbiol 2015;200:104-11. doi: 10.1016/j. ijfoodmicro.2015.02.009Search in Google Scholar

2. Zani C, Restivo FM, Carcelli M, Feretti D, Pelosi G, Rogolino D, Degola F, Galati S, Bisceglie F, Buschini A. A biotechnological approach for the development of new antifungal compounds to protect the environment and the human health. J Public Health Res 2015;4:613. doi: 10.4081/ jphr.2015.613Search in Google Scholar

3. Battilani P, Toscano P, Van der Fels-Klerx HJ, Moretti A, Camardo Leggieri M, Brera C, Rortais A, Goumperis T, Robinson T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 2016;12;6:24328. doi: 10.1038/srep24328Search in Google Scholar

4. Radulović N, Stojanović G, Vukićević R, Dekić V, Dekić B, Palić R. New 3,4-annelated coumarin derivatives: synthesis, antimicrobial activity, antioxidant capacity, and molecular modeling. Monatsh Chem Chem Mon 2006;137:1477-86. doi: 10.1007/s00706-006-0537-6Search in Google Scholar

5. Soltani S, Dianat S, Sardari S. Forward modeling of the coumarin antifungals; SPR/SAR based perspective. Avicenna J Med Biotechnol 2009;1(2):95-103. PMC 3558124Search in Google Scholar

6. Pelosi G. Thiosemicarbazone metal complexes: From structure to activity. The Open Crystallography Journal 2010;3:16-28 [displayed 10 February 2017]. Avaliable at in Google Scholar

7. Pishawikar AS, More HN. Synthesis, docking and in-vitro screening of mannich bases of thiosemicarbazide for antifungal activity. Arabian Journal of Chemistry 2013 [displayed 10 February 2017]. Avaliable at in Google Scholar

8. Cardenas-Ortega NC, Perez-Gonzalez C, Zavala-Sanchez MA, Hernandez-Ramirez AB, Perez-Gutierrez S. Antifungal activity of seselin in protecting stored maize from Aspergillus flavus. Asian J Plant Sci 2007;6:712-4. doi: 10.3923/ ajps.2007.712.714Search in Google Scholar

9. Mishra BB, Singh DD, Kishore N, Tiwari VK, Tripathi V. Antifungal constituents isolated from the seeds of Aegle marmelos. Phytochemistry 2010;71:230-4. doi: 10.1016/j. phytochem.2009.10.013Search in Google Scholar

10. Šarkanj B, Molnar M, Čačić M, Gille L. 4-Methyl-7- hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem 2013;139:488-95. doi: 10.1016/j.foodchem.2013.01.027Search in Google Scholar

11. Guerra FQS, Aquino de Araújo RS, Pereira de Sousa J, de Oliveira Pereira F, Mendonça-Junior FJB, Barbosa-Filho JM de Oliveira Lima E. Evaluation of antifungal activity and mode of action of new coumarin derivative, 7-Hydroxy-6- nitro-2H-1-benzopyran-2-one, against Aspergillus spp. Evid Based Complement Alternat Med 2015;2015:925096. doi: 10.1155/2015/925096Search in Google Scholar

12. Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, Raikhel NV, Calvo AM, Linz JE. A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci USA 2009;106:19533-8. doi: 10.1073/pnas.0907416106Search in Google Scholar

13. Chanda A, Roze LV, Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell 2010;9:1724-7. doi: 10.1128/EC.00118-10Search in Google Scholar

14. Yu J. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 2012;4:1024-57. doi: 10.3390/toxins4111024Search in Google Scholar

15. Angelova MB, Pashova SB, Spasova BK, Vassilev S V, Slokoska LS. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 2005;109:150-8. doi: 10.1017/S0953756204001352Search in Google Scholar

16. Reverberi M, Fabbri AA, Zjalic S, Ricelli A, Punelli F, Fanelli C. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl Microbiol Biotechnol 2005;69:207-15. doi: 10.1007/ s00253-005-1979-1Search in Google Scholar

17. Esworthy RS, Chu FF, Doroshow JH. Analysis of glutathionerelated enzymes. In: Costa LG, Hodgson E, Lawrence DA, Reed DJ, Greenlee WF, editors. Current Protocols in Toxicology. Chapter 7. Assessment of the activity of antioxidant enzymes. New York (NY): John Wiley & Sons; 2005. p. 7.1.1.-7.1.32.Search in Google Scholar

18. Lushchak VI, Gospodaryov DV. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int 2005;29:187-92. doi: 10.1016/j. cellbi.2004.11.001Search in Google Scholar

19. Holmes RA, Boston RS, Payne GA. Diverse inhibitors of aflatoxin biosynthesis. Appl Microbiol Biotechnol 2008;78:559-72. doi: 10.1007/s00253-008-1362-0Search in Google Scholar

20. Jayashree T, Subramanyam C. Oxidative stress a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic Biol Med 2000;29:981-5. doi: 10.1016/S0891-5849(00)00398-1Search in Google Scholar

21. Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 2010;87:899-911. doi: 10.1007/s00253-010-2657-5Search in Google Scholar

22. Reverberi M, Punelli M, Smith CA, Zjalić S, Scarpari M, Scala V, Cardinali G, Aspite N, Pinzari F, Payne GA, Fabbri AA, Fanelli C. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS One 2012;7:e48097. [displayed 19 October 2012]. Available at 10.1371/journal.pone.0048097347713423094106Search in Google Scholar

Inglese, Slovenian
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other