INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Rowe M., Liu S., Recent developments in underwater wet welding. Science and Technology of Welding and Joining. 6(6) (2001), 387-396.10.1179/stw.2001.6.6.387Search in Google Scholar

2. Rogalski G., Łabanowski J., Fydrych D., Tomków J., Bead-on-plate welding on S235JR steel by underwater local dry chamber process. Polish Maritime Research. 21(2) (2014), 58-64.10.2478/pomr-2014-0020Search in Google Scholar

3. Fydrych D., Świerczyńska A., Rogalski G., Effect of underwater wet welding conditions on the diffusible hydrogen content in deposited metal. Metallurgia Italiana. 11/12 (2015), 47-52.Search in Google Scholar

4. Di X., Ji S., Cheng F., Wang D., Cao J.: Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding. Materials & Design. 88 (2015), 505-513.Search in Google Scholar

5. Zhang Y., Jia C., Zhao B., Hu J., Wu C., Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW. Journal of Materials Processing Technology. 238 (2016), 373-382.Search in Google Scholar

6. Guo N., Xing X., Zhao H., Tan C., Feng J., Deng Z., Effect of water depth on weld quality and welding process in underwater fiber laser welding. Materials & Design. 115 (2017), 112-120.Search in Google Scholar

7. Li H.L., Liu D., Yan Y.T., Guo N., Feng J.C.: Microstructural characteristics and mechanical properties of underwater wet flux-cored wire welded 316L stainless steel joints. Journal of Materials Processing Technology. 238 (2016), 423-430.Search in Google Scholar

8. Pan J., Yang L., Hu S., Chai S., Numerical analysis of thermal cycle characteristics and prediction of microstructure in multi-pass UWW. The International Journal of Advanced Manufacturing Technology. 84(5-8) (2016), 1095-1102.Search in Google Scholar

9. Kralj S., Garašić I., Kožuh Z.: Diffusible hydrogen in underwater wet welding. Welding in the World. 52 (2008), 687-692.Search in Google Scholar

10. Jia C., Zhang T., Maksimov S.Y., Yuan X., Spectroscopic analysis of the arc plasma of underwater wet flux-cored arc welding. Journal of Materials Processing Technology. 213(8) (2013), 1370-1377.10.1016/j.jmatprotec.2013.02.013Search in Google Scholar

11. Fydrych D., Łabanowski J., An experimental study of high-hydrogen welding processes. Revista de Metalurgia. 51(4) (2015), 5-6.10.3989/revmetalm.055Search in Google Scholar

12. Arias A.R., Bracarense A.Q., Velocidade de propagação de trinca por fadiga de soldas subaquáticas molhadas: avaliação fora da água. Soldagem & Inspeção. 20(4) (2015), 403-411.10.1590/0104-9224/SI2004.07Search in Google Scholar

13. Sun Q.J., Cheng W.Q., Liu Y.B., Wang J.F., Cai C.W., Feng J.C., Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Materials & Design. 103 (2016), 63-70.Search in Google Scholar

14. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W., Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology. 223 (2015), 305-312.Search in Google Scholar

15. Gutiérrez P.H., Rodríguez, F.C., Mondragón J.J.R., Dávila J.L.A., Mata M.P.G., Chavez C.A.G., Thermo-mechanic and microstructural analysis of an underwater welding joint. Soldagem & Inspeção. 21(2) (2016), 156-164.10.1590/0104-9224/SI2102.05Search in Google Scholar

16. Padhy G.K., Ramasubbu V., Parvathavarthini N., Wu C.S., Albert S.K., Influence of temperature and alloying on the apparent diffusivity of hydrogen in high strength steel. International Journal of Hydrogen Energy. 40(20) (2015), 6714-6725.10.1016/j.ijhydene.2015.03.153Search in Google Scholar

17. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Archives of Civil and Mechanical Engineering. 16(4) (2016), 777-783.10.1016/j.acme.2016.05.001Search in Google Scholar

18. Pandey C., Saini N., Mahapatra M.M., Kumar P., Hydrogen induced cold cracking of creep resistant ferritic P91 steel for different diffusible hydrogen levels in deposited metal. International Journal of Hydrogen Energy. 41(39) 2016, 17695-17712.10.1016/j.ijhydene.2016.07.202Search in Google Scholar

19. Silva L.F., Dos Santos V.R., Paciornik S., Mertens J.C.E., Chawla N., Multiscale 3D characterization of discontinuities in underwater wet welds. Materials Characterization. 107 (2015), 358-366.Search in Google Scholar

20. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L., Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal. 1 (2015), 8-15.Search in Google Scholar

21. Fydrych D., Łabanowski J., Rogalski G., Weldability of high strength steels in wet welding conditions. Polish Maritime Research. 20(2) (2013), 67-73.10.2478/pomr-2013-0018Search in Google Scholar

22. de Albuquerque V.H., Silva C.C., Moura C.R., Aguiar W.M., Farias J.P., Effect of nonmetallic inclusion and banding on the success of the two-layer temper bead welding technique. Materials & Design. 30(4) (2009), 1068-1074.10.1016/j.matdes.2008.06.056Search in Google Scholar

23. Aloraier A.S., Joshi S., Price J.W., Alawadhi K.H., Hardness, microstructure, and residual stresses in low carbon steel welding with post-weld heat treatment and temper bead welding. Metallurgical and Materials Transactions A. 45(4) (2014), 2030-2037.10.1007/s11661-013-2170-4Search in Google Scholar

24. Aloraier A., Al-Mazrouee A., Price J.W.H., Shehata T., Weld repair practices without post weld heat treatment for ferritic alloys and their consequences on residual stresses: A review. International Journal of Pressure Vessels and Piping. 87(4) (2010), 127-133.10.1016/j.ijpvp.2010.02.001Search in Google Scholar

25. Aloraier A., Ibrahim R., Thomson P., FCAW process to avoid the use of post weld heat treatment. International Journal of Pressure Vessels and Piping. 83(5) (2006), 394-398.10.1016/j.ijpvp.2006.02.028Search in Google Scholar

26. Łabanowski J., Prokop-Strzelczyńska K., Rogalski G., Fydrych D., The effect of wet underwater welding on cold cracking susceptibility of duplex stainless steel. Advances in Materials Science. 16(2) (2016), 68.10.1515/adms-2016-0010Search in Google Scholar

27. Górka J., Study of structural changes in S700MC steel thermomechanically treated under the influence of simulated welding thermal cycles. Indian Journal of Engineering and Materials Sciences. 22 (2015), 497-502.Search in Google Scholar

28. Kurji R., Lavigne O., Ghomashchi R., Micromechanical characterisation of weld metal susceptibility to hydrogen-assisted cold cracking using instrumented indentation. Welding in the World. 60(5) (2016), 883–897.10.1007/s40194-016-0348-2Search in Google Scholar

29. Sharp J. V., Billingham J., Robinson M. J., The risk management of high-strength steels in jackups in seawater. Marine Structures. 14(4) (2001), 537-551.10.1016/S0951-8339(00)00053-8Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials