Accesso libero

Concept of a Conducting Composite Material for Lightning Strike Protection

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. http://aviationknowledge.wikidot.com/aviation:boeing-787-advancementsSearch in Google Scholar

2. http://altairenlighten.com/2012/12/the-a350-xwb-prepares-for-static-testingSearch in Google Scholar

3. Rupke E.J.: What happens when lightning strikes an airplane?, Scientific American, 14.08.2006, http://www.scientificamerican.com/article/what-happens-when-lightni.Search in Google Scholar

4. Gardner G.: Lightning strike protection for composite structures, High-Performance Composites 14 (2006) 44.Search in Google Scholar

5. Metwally I.A., A-Rahim A.A., Heidler F., Zischank W.: Computation of transient-temperature profiles in objects exposed to simulated lightning currents, International Journal of Thermal Sciences 45 (2006) 691-696.Search in Google Scholar

6. Ranjith R., Myong R.S., Lee S.: Computational investigation of lightning strike effects on aircraft components, International Journal of Aeronautical and Space Sciences 15 (2014) 44-53.Search in Google Scholar

7. Rupke E.J.: Lightning direct effects handbook, Lightning Technologies Inc., Pittsfield, 2002.Search in Google Scholar

8. Mulazimoglu M., Haylock L.: Recent developments in techniques to minimize lightning current arcing between fasteners and composite structure. [In] Proceedings of the International Conference on Lightning and Static Electricity (ICOLSE), Oxford, 2011.Search in Google Scholar

9. Christian H.J., Blakeslee R.J., Boccippio D.J., Boeck W.L., Buechler D.E., Driscoll K.T., Goodman S.J., Hall J.M., Koshak W.J., Mach D.M., Stewart M.F.: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, Journal of Geophysical Research 108 (2003) 4005.Search in Google Scholar

10. Aerospace Recommended Practice ARP 5414. Aircraft lightning zoning, SAE Int., 1999.Search in Google Scholar

11. Sweers G., Birch B., Gokcen J.: Lightning strikes: protection, inspection, and repair, Aero Magazine 4 (2012) 19-28.Search in Google Scholar

12. Feraboli P., Miller M.: Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike, Composites: Part A 40 (2009) 954-967.Search in Google Scholar

13. Hirano Y., Katsumata S., Iwahori Y., Todoroki A.: Artificial lightning testing on graphite/epoxy composite laminate, Composites: Part A 41 (2010) 1461-1470.Search in Google Scholar

14. Muñoz R., Delgado S., González C., López-Romano B., Wang D.-Y., LLorca J.: Modeling lightning impact thermo-mechanical damage on composite materials, Applied Composite Materials 21 (2014) 149-164.Search in Google Scholar

15. Dong Q., Guo Y., Sun X., Jia Y.: Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike, Polymer 56 (2015) 385-394.Search in Google Scholar

16. Todoroki A., Ohara K., Mizutani Y., Suzuki Y., Matsuzaki R.: Lightning strike damage detection at a fastener using self-sensing TDR of composite plate, Composite Structures 132 (2015) 1105-1112.Search in Google Scholar

17. Kawakami H., Feraboli P.: Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites, Composites: Part A 42 (2011) 1247-1262.Search in Google Scholar

18. Gagné M., Therriault D.: Lightning strike protection of composites, Progress in Aerospace Sciences 64 (2014) 1-16.10.1016/j.paerosci.2013.07.002Search in Google Scholar

19. Long-term durability of polymeric matrix composites. K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner [eds.], Springer, New York, 2012.Search in Google Scholar

20. Liu Z.Q., Yue Z.F., Wang F.S., Ji Y.Y.: Optimizations of flame spraying aluminium thickness and laminate plies for composite lightning protection, Advanced Materials Research 915-916 (2014) 698-703.Search in Google Scholar

21. Bauhofer W., Kovacs J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology 69 (2009) 1486-1498.Search in Google Scholar

22. Gou J., Tang Y., Liang F., Zhao Z., Firsich D., Fielding J.: Carbon nanofiber paper for lightning strike protection of composite materials, Composites: Part B 41 (2010) 192-198.Search in Google Scholar

23. Morales G., Barrena M.I., Gómez de Salazar J.M., Merino C.: Conductive CNF-doped laminates processing and characterization, Journal of Composite Materials 45 (2011) 2113-2118.Search in Google Scholar

24. Chakravarthi D.K., Khabashesku V.N., Vaidyanathan R., Blaine J., Yarlagadda S., Roseman D., Zeng Q., Barrera E.V.: Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightning-strike protection, Advanced Functional Materials 21 (2011) 2527-2533.Search in Google Scholar

25. Han J., Zhang H., Chen M., Wang D., Liu Q., Wu Q., Zhang Z.: The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates, Carbon 94 (2015) 101-113.Search in Google Scholar

26. Al-Saleh M.H., Sundararaj U.: A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon 47 (2009) 2-22.Search in Google Scholar

27. Spitalsky Z., Tasis D., Papagelis K., Galiotis C.: Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Sciences 35 (2010) 357-401.Search in Google Scholar

28. Aguilar J.O., Bautista-Quijano J.R., Avilés F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films, Experss Polymer Letters 4 (2010) 292-299.Search in Google Scholar

29. Chen Y., Wang S., Pan F., Zhang J.: A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black, Journal of Nanomaterials 2014 (2014) 614797.Search in Google Scholar

30. Lonjon A., Laffont L., Demont P., Dantras E., Lacabanne C.: New highly conductive nickel nanowire-filled P(VDF-TrFE) copolymer nanocomposites: elaboration and structural study, Journal of Physical Chemistry C 113 (2009) 12002-12006.Search in Google Scholar

31. Cho Y.S., Huh Y.D.: Synthesis of ultralong copper nanowires by reduction of copper-amine complexes, Materials Letters 63 (2009) 227-229.Search in Google Scholar

32. Yu Y.H., Ma C.C.M., Yuen S.M., Teng C.C., Huang Y.L., Wang I., Wei M.H.: Morphology, electrical and rheological properties of silane-modified silver nanowire/polymer composites, Macromolecular Materials and Engineering 295 (2010) 1017-1024.Search in Google Scholar

33. Wilms M., Conrad J., Vasilev K., Kreiter M., Wegner G.: Manipulation and conductivity measurements of gold nanowires, Applied Surface Science 238 (2004) 490-494.Search in Google Scholar

34. Katunin A., Krukiewicz K.: Electrical percolation in composites of conducting polymers and dielectrics, Journal of Polymer Engineering 35 (2015) 731-741.Search in Google Scholar

35. Jia W., Tchoudakov R., Segal E., Joseph R., Narkis M., Siegmann A.: Electrically conductive composites based on epoxy resin with polyaniline-DBSA fillers, Synthetic Metals 132 (2003) 269-278.Search in Google Scholar

36. Paligová M., Vilčákova J., Sáha P., Křesálek V., Stejskal J., Quadrat O.: Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base, Physica A 335 (2004) 421-429.Search in Google Scholar

37. Jia Q.M., Li J.B., Wang L.F., Zhu J.W., Zheng M.: Electrically conductive epoxy resin composites containing polyaniline with different morphologies, Materials Science and Engineering: A 448 (2007) 356-360.Search in Google Scholar

38. Kumar V., Yokozeki T., Goto T., Takahashi T.: Mechanical and electrical properties of PANI-based conductive thermosetting composites, Journal of Reinforced Plastics and Composites 34 (2015) 1298-1305.Search in Google Scholar

39. Men'shikov M.V.: Estimates for percolation thresholds for lattices in Rn, Soviet Mathematics Doklady 32 (1985) 368-370.Search in Google Scholar

40. Men'shikov M.V., Molchanov S.A., Sidorenko A.F.: Percolation theory and some applications, Journal of Soviet Mathematics 42 (1988) 1766-1810.Search in Google Scholar

41. Kozlov S.M.: Geometric aspects of averaging, Russian Mathematical Surveys 44 (1989) 91-132.10.1070/RM1989v044n02ABEH002039Search in Google Scholar

42. Zhikov V.V.: Asymptotic problems connected with the heat equation in perforated domains, Mathematics of the USSR-Sbornik 71 (1992) 125-147.Search in Google Scholar

43. Shklovskii B., Efros A.: Percolation theory and conductivity of strongly inhomogeneous media, Soviet Physics Uspekhi 18 (1975) 845-862.10.1070/PU1975v018n11ABEH005233Search in Google Scholar

44. Sokolov I.M.: Dimensionalities and other geometric critical exponents in percolation theory, Soviet Physics Uspekhi 29 (1986) 924-945.Search in Google Scholar

45. Herega A.N.: Physical aspects of self-organization processes in composites. 1. Simulation of percolation clusters of phases and of inner boundaries, Nanomechanics Science and Technology 4 (2013) 119-132.Search in Google Scholar

46. Herega A. The dimensions: Genesis of representations and physical applications, Proceedings of the Odessa National Academy of Food Technologies 47 (2015) 33-44 (in Russian).Search in Google Scholar

47. Haberko J., Raczkowska J., Bernasik A., Rysz J., Nocun M., Niziol J.: Conductivity of thin polymer films containing polyaniline, Molecular Crystals and Liquid Crystals 485 (2008) 796-803.10.1080/15421400801918112Search in Google Scholar

48. Yague J.L., Guimera A., Villa R., Agullo N., Borros S.: A new four-point probe design to measure conductivity in polymeric thin films, Afinidad 70 (2013) 166-169.Search in Google Scholar

49. Tanzifi M., Eisazadeh H.: Effects of various surfactants and solutions on the morphology of polyaniline composite and nanocomposite, Journal of Vinyl and Additive Technology 17 (2011) 274-280.Search in Google Scholar

50. Tran H.D., D’Arcy J.M., Wang Y., Beltramo P.J., Strong V.A., Kaner R.B.: The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures, Journal of Materials Chemistry 21 (2010) 3534-3550.Search in Google Scholar

51. Li L., Ferng L., Wei Y., Yang C., J H.F.: Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water, Journal of Colloid and Interface Science 381 (2012) 11-16.Search in Google Scholar

52. Khalid M., Tumelero M.A., Brandt I.S., Zoldan V.C., Acuna J.J.S., Pasa A.A.: Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids, Indian Journal of Materials Science 2013 (2013) 718304.Search in Google Scholar

53. Jagadeesh Babu V., Murthy D.V.B., Subramanian V., Murthy V.R.K., Natarajan T.S., Ramakrishna S.: Microwave Hall mobility and electrical properties of electrospun polymer nanofibers, Journal of Applied Physics 109 (2011) 074306.Search in Google Scholar

54. Sutar D.S., Tewari R., Dey G.K., Gupta S.K., Yakhmi J.V.: Morphology and structure of highly crystalline polyaniline films, Synthetic Metals 159 (2009) 1067-1071.Search in Google Scholar

55. Catalanotti G., On the generation of RVE-based models of composites reinforced with long fibres or spherical particles, Composite Structures 138 (2016) 84-95.10.1016/j.compstruct.2015.11.039Search in Google Scholar

56. Lubachevsky B.D., Stillinger F.H.: Geometric properties of random disk packings, Journal of Statistical Physics 60 (1990) 561-583.Search in Google Scholar

57. Catalanotti G., Katunin A., Modelling the electro-mechanical properties of PPy/epoxy condictive composites, Computational Materials Science 113 (2016) 88-97.10.1016/j.commatsci.2015.11.016Search in Google Scholar

58. Armelin E., Meneguzzi A., Ferreira C.A., Aleman C.: Polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion, Surface and Coatings Technology 203 (2009) 3763-3769.Search in Google Scholar

59. Yang X., Zhao T., Yu Y., Wei Y.: Synthesis of conductive polyaniline/epoxy resin composites: doping of the interpenetrating network, Synthetic Metals 142 (2004) 57-61.Search in Google Scholar

60. Airoudj A., Debarnot D., Beche B., Poncin-Epaillard F.: Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite, Talanta 77 (2009) 1590-1596.Search in Google Scholar

61. Oyharcabal M., Olinga T., Foulc M.P., Vigneras V.: Polyaniline/clay as nanostructured conductive filler for electrically conductive epoxy composites. Influence of filler morphology, chemical nature of reagents, and curing conditions on composite conductivity, Synthetic Metals 162 (2012) 555-562.Search in Google Scholar

62. Schettini A., Peres R.C.D., Soares B.G.: Synthesis of polyaniline/camphor sulfonic acid in formic acid medium and their blends with polyamide-6 by in situ polymerization, Synthetic Metals 159 (2009) 1491-1495.Search in Google Scholar

63. Yang X., Zhao T., Yu Y., Wei Y.: Synthesis of conductive polyaniline/epoxy resin composites: doping of the interpenetrating network, Synthetic Metals 142 (2004) 57-61.Search in Google Scholar

64. Tiitu M., Talo A., Forsen O., Ikkala O.: Aminic epoxy resin hardeners as reactive solvents for conjugated polymers: polyaniline base/epoxy composites for anticorrosion coatings, Polymer 46 (2005) 6855-6861.Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials