Accesso libero

Factorial Design based Optimisation of Crevice Corrosion for Type 304 Stainless Steel in Chloride Solutions

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1 Du, N., Tian, W.M., Zhao, Q. and Chen, S.B., Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5% NaCl solution. Acta Metallurgica Sinica, 48 (7) (2012), 807–814.10.3724/SP.J.1037.2012.00005Search in Google Scholar

2 Kazuki, F., Nobuko, Y., Minato, E. and Masayuki, M., Anodic behaviour of stainless steel substrate in organic electrolyte solutions containing different lithium salts, Electrochimica Acta. 140 (2014), 125–131.10.1016/j.electacta.2014.03.136Search in Google Scholar

3 Tian, W., Li, S., Du, N., Chen, S. and Wu, Q., Effect of applied potential on stable pitting of 304 stainless steel. Corrosion Science, 93(1) (2015), 242-255.10.1016/j.corsci.2015.01.034Search in Google Scholar

4 Heppner, K.L., Evitts, R.W., and Postlethwaite, J., Prediction of the crevice corrosion incubation period of passive metals at elevated temperatures. Part I. Mathematical model. Canadian Journal of Chemical Engineering, 1(8) (2002), 849–856.10.1002/cjce.5450800508Search in Google Scholar

5 Kennell G. F., Evitts R W. and Heppner K. L., A critical crevice solution and IR drop crevice corrosion model. Corrosion Science, 1(5) (2008), 1716–1725.10.1016/j.corsci.2008.02.020Search in Google Scholar

6 Hu, Q., Zhang, G., Qiu., Y. and Guo, X., The crevice corrosion behaviour of stainless steel in sodium chloride solution. Corrosion Science, 53(12) (2011), 4065-4072.10.1016/j.corsci.2011.08.012Search in Google Scholar

7 Matjaž, T., Franc, T. and Matjaž G., Crevice corrosion of stainless-steel fastening components in an indoor marine-water basin. MTAEC9, 46(4) (2012), 423-428.Search in Google Scholar

8 Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., Turgoose S., Measures for the detection of localized corrosion with electrochemical noise. Electrochimica Acta, (46) (2001), 3665–3674.10.1016/S0013-4686(01)00645-4Search in Google Scholar

9 Li, W., Yuan, B., Wang, C., Li, L. and Chen S., Dynamic sensing of localized corrosion at the metal/solution interface. Sensors, 12 (2012), 4962-4973.Search in Google Scholar

10 Szklarska-Smialowska Z. Pitting corrosion of metals, in: National Association of Corrosion Engineers, Houston, TX 1(1) (1996), 69-72.Search in Google Scholar

11 Pickering, H.W., Important early developments and current understanding on the IR mechanism of localized corrosion. Journal of Electrochemical Society, 15(1) (2003), K1–K12.10.1149/1.1565142Search in Google Scholar

12 Lee, T. S., Kain, R. M. and Oldfield, J.W., Effect of environmental variables on crevice corrosion of stainless steels in seawater. Material Performance, 2(3) (2004), 7-9.Search in Google Scholar

13 Sharland, S. M. and Tasker, P. W. (1988) A mathematical model of crevice and pitting corrosion. I. The physical model. Corrosion Science. 2(8), 603–620.10.1016/0010-938X(88)90027-3Search in Google Scholar

14 Walton, J. C., Cragnolino, G. and Kalandros, S. K. (1996) A numerical model of crevice corrosion for passive and active metals. Corrosion Science, 3(8), 1–18.10.1016/0010-938X(96)00107-2Search in Google Scholar

15 White, S. P., Weir, G. J. and Laycock, N. J., Calculating chemical concentrations during the initiation of crevice corrosion. Corrosion Science, 4(2) (2000) 605–629.10.1016/S0010-938X(99)00097-9Search in Google Scholar

16 Yuki, O., Jumpei, T., Kenji, A., Hiroshi, Y., and Keisuke H., Numerical method for time - dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method. Corrosion Science, 6(3) (2012), 210–224.10.1016/j.corsci.2012.06.001Search in Google Scholar

17 De Jong, L.A. and Kelly, R.G., The Demonstration of the Microfabrication of Rigorously Defined Crevices for the Investigation of Crevice Corrosion Scaling Laws, in Critical Factors in Localized Corrosion III, The Electrochemical Society: Pennington, NJ. (1999), 678-688.Search in Google Scholar

18 Postlethwaite, J., Evitts, R. W., Watson, M. K., Modelling the initiation of crevice corrosion of passive alloys at elevated temperature. NACE International, 19(2) (1995), 367 – 377.Search in Google Scholar

19 Hepsen, R. and Kaya, Y., Optimization of membrane fouling using experimental design: an example from dairy wastewater treatment, Industrial and Engineering Chemistry Research. 51 (49) (2012),16074–16084.10.1021/ie302450sSearch in Google Scholar

20 Gu, T., Chen, Z., Jiang, X., Zhou, L., Liao, Y., Duan, M. and Wang, H., Synthesis and inhibition of N-alkyl-2-(4-hydroxybut-2-ynl) pyridinium bromide for mild steel in acid solution: Box-Behnken design optimisation and mechanism probe. Corrosion Science, 90 (2015), 118-132.Search in Google Scholar

21 ASTM Standard G78 (2007). Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base Stainless Alloy in Seawater and Other Chloride-Containing Aqueous Environments.Search in Google Scholar

22 Cai, B., Lui, Y., Tian, X., Wang, F., Li, H. and Ji, R., An experimental study of crevice behaviour of 316L stainless steel in artificial seawater. Corrosion Science, 52 (2010), 3235-3242.Search in Google Scholar

23 Yang, Y. Z., Jiang, Y. M. and Li, J., In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution. Corrosion Science, 76 (2013), 163-169.Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials