Accesso libero

Estimation of Young’s Modulus of the Porous Titanium Alloy with the Use of Fem Package

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Arabnejad Khanoki S., Pasini D.: Multiscale design and multiobjective optimization of orthopaedic hip implants with functionally graded cellular material. Journal of Biomechanical Engineering 134 (2012).10.1115/1.400611522482684Search in Google Scholar

2. Bram M., Schiefer H., Bogdanski D. et al.: Implant surgery: How bone bonds to PM titanium. Metal Powder Report 61 (2006) 26-28, 30-31.Search in Google Scholar

3. Biomet: Regenerex Brochure, Warsaw, 2008.Search in Google Scholar

4. Dabrowski B., Swieszkowski W., Godlinski D., Kurzydlowski K. J.: Highly porous titanium scaffolds for orthopaedic applications. J. of Biomedical Materials Research Part B 95A (2012) 53-61.Search in Google Scholar

5. Deville S.: Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities. Materials 3 (2010) 1913-1927.Search in Google Scholar

6. Dezfuli S.N., Sadrnezhaad S.K. i in.: Fabrication of biocompatible titanium scaffolds using space holder technique. J Mater Sci Mater Med. 23 (2012) 2483-2488.Search in Google Scholar

7. Li J.P., Wijn J.R., van Blitterswijk C. A., de Groot K.: Comparison of Porous Ti6Al4V Made by Sponge Replication and Directly 3D Fiber Deposition and Cancellous Bone. Key Engineering Materials 330-332 (2007) 999-1002.Search in Google Scholar

8. Li R., Shi Y., Wang Z. i in.: Densification behaviour of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science 256 (2010) 4350-4356.Search in Google Scholar

9. Lin C.-Y., Wirtz T., LaMarca F., Hollister S.J: Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Materials Research Part A 83A (2007) 272-279.Search in Google Scholar

10. Lindner M., Hoeges S, Meiners W. i in.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. Journal of Biomedical Materials Research Part A 97A (2011) 466-471.Search in Google Scholar

11. Liu F.-H., Lee R.-T., Lin W.-H, Liao Y.-S.: Selective laser sintering of bio-metal scaffold. Procedia CIRP 5 (2013) 83 - 87.Search in Google Scholar

12. Maya A.E., Grana D.R., Kokubu G.A. i in.: Zr-Ti-Nb porous alloys for biomedical application. Materials Science and Engineering C 32 (2012) 321-329.Search in Google Scholar

13. Rotta G., Seramak T.: On the necessity of experimental verification of numerical results in biomedical applications. Proceedings of the XIX National Conference Applications of Mathematics and Biology and Medicine, Gdansk, Poland, 2013, pp. 78-83.Search in Google Scholar

14. Warnke P. H., Douglas T, Wollny P i in.: Rapid Prototyping: Porous Titanium Alloy Scaffold Produced by Selective Laser Melting for Bone Tissue Engineering. Tissue Engineering 15 (2009) 115-124.Search in Google Scholar

15. Yavari S.A., Wauthle R., Riemslag A.C. i in.: Fatigue behaviour of porous biomaterials manufactured using selective laser melting. Materials Science and Engineering C 33 (2013) 4849-4858.Search in Google Scholar

16. Zimmer, Trabecular Metal Brochure, Carlsbad, 2012.Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials