1. bookVolume 66 (2016): Edizione 1 (March 2016)
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Microscopic methods in analysis of submicron phospholipid dispersions

Pubblicato online: 07 Mar 2016
Volume & Edizione: Volume 66 (2016) - Edizione 1 (March 2016)
Pagine: 1 - 22
Accettato: 21 Sep 2015
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno

1. P. Couvreur, Nanoparticles in drug delivery: past, present and future, Adv. Drug Deliv. Rev. 65 (2013) 21–23; DOI: 10.1016/j.addr.2012. in Google Scholar

2. I. F. Uchegbu and A. Siew, Nanomedicines and nanodiagnostics come of age, J. Pharm. Sci. 102 (2013) 305–310; DOI: 10.1002/jps.23377.10.1002/jps.2337723175462Search in Google Scholar

3. T. M. Allen and P. R. Cullis, Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev. 65 (2013) 36–48; DOI: 10.1016/j.addr.2012. in Google Scholar

4. E. Fattal and Ch. Vauthier, Drug Delivery: Nanoparticles, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), Informa Healthcare, New York 2007, pp. 1183–1200.Search in Google Scholar

5. N. Anton and T. F. Vandamme, Nano-emulsions and micro-emulsions: clarification of the critical differences, Pharm. Res. 28 (2011) 978–985; DOI: 10.1007/s11095-010-0309-1.10.1007/s11095-010-0309-121057856Search in Google Scholar

6. C. R. Rowe, P. J. Sheskey and S. C. Owen, Handbook of Pharmaceutical Excipients, 5th ed., Pharmaceutical Press, London 2006, pp. 409–411.Search in Google Scholar

7. A. Michajlik and E. Bartnikowska, Lipidy i lipoproteiny osocza, PZWL, Warsaw 1999.Search in Google Scholar

8. W. Bernhard, S. Hoffmann, H. Dombrovsky, G. A. Rau, A. Kamlage, M. Kappler, J. J. Haitsma, J. Freihorst, H. von der Hardt and C. F. Poets, Phosphatidylcholine molecular species in lung surfactant: composition in relation to respiratory rate and lung development, Am. J. Respir. Cell Mol. Biol. 25 (2001) 725–731; DOI: 10.1165/ajrcmb.25.6.4616.10.1165/ajrcmb.25.6.461611726398Search in Google Scholar

9. S. Tamilvanan, Oil-in-water emulsions: implications for parenteral and ocular delivering systems, Prog. Lipid Res. 43 (2004) 489–533; DOI: 10.1016/j.plipres.2004. in Google Scholar

10. N. A. Mazer, G. B. Benedek and M. C. Carey, Quasi elastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions, Biochemistry19 (1980) 601–615; DOI: 10.1021/bi00545a001.10.1021/bi00545a0017356951Search in Google Scholar

11. W. Mehnert and K. Mäder, Solid lipid nanoparticles: production, characterization and applications, Adv. Drug Deliv. Rev. 64 (2012) 83–101; DOI: 10.1016/j.addr.2012. in Google Scholar

12. S. A. Wissing, O. Kayser and R. H. Müller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug Deliv. Rev. 56 (2004) 1257–1272; DOI: 10.1016/j.addr.2003. in Google Scholar

13. M. Brandl, Vesicular phospholipid gels: a technology platform, J. Liposome Res. 17 (2007) 15–26; DOI: 10.1080/08982100601186490.10.1080/0898210060118649017454400Search in Google Scholar

14. M. Brandl, M. Drechsler, D. Bachmann, C. Tardi, M. Schmidtgen and K. H. Bauer, Preparation and characterization of semi-solid phospholipid dispersions and dilutions thereof, Int. J. Pharm. 170 (1998) 187–199; DOI: 10.1016/S0378-5173(98)00146-X.10.1016/S0378-5173(98)00146-XSearch in Google Scholar

15. C. Tardi, M. Drechsler, K. H. Bauer and M. Brandl, Steam sterilization of vesicular phospholipid gels, Int. J. Pharm. 217 (2001) 161–172; DOI: 10.1016/S0378-5173(01)00605-6.10.1016/S0378-5173(01)00605-6Search in Google Scholar

16. M. Sznitowska, E. A. Dąbrowska and S. Janicki, Solubilizing potential of submicron emulsions and aqueous dispersions of lecithin, Int. J. Pharm. 246 (2002) 203–206; DOI: 10.1016/S0378-5173(02)00395-2.10.1016/S0378-5173(02)00395-2Search in Google Scholar

17. M. Sznitowska, M. Klunder and M. Płaczek, Paclitaxel solubility in aqueous dispersions and mixed micellar solutions of lecithin, Chem. Pharm. Bull. 56 (2008) 70–74; DOI: 10.1248/cpb. in Google Scholar

18. M. Sznitowska, M. Bodnar, J. Petrusewicz, H. Janik and E. A. Dąbrowska, Preliminary in vivo studies of a new lecithin-based formulation of paclitaxel, J. Microencapsul. 26 (2009) 588–592; DOI: 10.3109/02652040802586068.10.3109/02652040802586068Search in Google Scholar

19. R. J. Haskell, Characterization of submicron systems via optical methods, J. Pharm. Sci. 87 (1998) 125–129; DOI: 10.1021/js970331i.10.1021/js970331iSearch in Google Scholar

20. V. Klang, N. B. Matsko, C. Valenta and F. Hofer, Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment, Micron43 (2012) 85–103; DOI: 10.1016/j.micron.2011. in Google Scholar

21. J. Kuntsche, J. C. Horst and H. Bunjes, Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems, Int. J. Pharm.417 (2011) 120–137; DOI: 10.1016/j.ijpharm.2011. in Google Scholar

22. S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed and Y. Perrie, Microscopy imaging of liposomes: from coverslips to environmental SEM, Int. J. Pharm. 417 (2011) 138–150; DOI: 10.1016/j.ijpharm.2010. in Google Scholar

23. J. A. Litwin and M. Gajda, Podstawy technik mikroskopowych, Jagiellonian University Press, Cracow 2011.Search in Google Scholar

24. P. E. West, Introduction to Atomic Force Microscopy, Pacific Nanotechnology, Santa Clara 2006, pp. 1–16.Search in Google Scholar

25. P. C. Schmidt, Secondary Electron Microscopy in Pharmaceutical Technology, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), Informa Healthcare, New York 2007, pp. 3217–3256.Search in Google Scholar

26. K. Akashi, H. Miyata, H. Itoh and K. Kinosita, Formation of giant liposomes promoted by divalent cations: critical role of electrostatic repulsion. Biophys. J. 74 (1998) 2973–2982; DOI: 10.1016/S0006-3495(98)78004-X.10.1016/S0006-3495(98)78004-XSearch in Google Scholar

27. R. M. Fernandez, K. A. Riske, L. Q. Amaral, R. Itri and M. T. Lamy, Influence of salt on the structure of DMPG studied by SAXS and optical microscopy, Biochim. Biophys. Acta. 1778 (2008) 907–916; DOI: 10.1016/j.bbamem.2007. in Google Scholar

28. C. C. Müller-Goymann, Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration, Eur. J. Pharm. Biopharm. 58 (2004) 343–356; DOI: 10.1016/j.ejpb.2004. in Google Scholar

29. C. C. Müller-Goymann, Drug Delivery: Liquid Crystals, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), Informa Healthcare, New York 2007, pp. 1115–1131.Search in Google Scholar

30. A. Graf, E. Ablinger, S. Peters, A. Zimmer, S. Hook and T. Rades, Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides, Int. J. Pharm. 350 (2008) 351–360; DOI: 10.1016/j.ijpharm.2007. in Google Scholar

31. N. Rodriguez, F. Pincet and S. Cribier, Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy, Colloids Surf. B. Biointerfaces42 (2005) 125–130; DOI: 10.1016/j.colsurfb.2005. in Google Scholar

32. P. Arunothayanun, M. S. Bernard, D. Q. M. Craig, I. F. Uchegbu and A. T. Florence, The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether, Int. J. Pharm. 201 (2000) 7–14; DOI: 10.1016/S0378-5173(00)00362-8.10.1016/S0378-5173(00)00362-8Search in Google Scholar

33. S. R. Pygall, J. Whetstone, P. Timmins and C. D. Melia, Pharmaceutical applications of confocal laser scanning microscopy: the physical characterization of pharmaceutical systems, Adv. Drug Deliv. Rev. 59 (2007) 1434–1452; DOI: 10.1016/j.addr.2007. in Google Scholar

34. J. Ch. Colas, W. Shi, V. S. Rao, A. Omri, M. R. Mozafari and H. Singh, Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting, Micron38 (2007) 841–847; DOI: 10.1016/j.micron.2007. in Google Scholar

35. B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni and M. A. Vandelli, AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study, Int. J. Nanomedicine6 (2011) 557–563; DOI: 10.2147/IJN.S14615.10.2147/IJN.S14615306580121468358Search in Google Scholar

36. M. A. Schubert and C. C. Müller-Goymann, Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier, Eur. J. Pharm. Biopharm. 61 (2005) 77–86; DOI: 10.1016/j.ejpb.2005. in Google Scholar

37. H. Zhou, Y. Yue, G. Liu, Y. Li, J. Zhang, Q. Gong, Z. Yan and M. Duan, Preparation and characterization of a lecithin nanoemulsion as a topical delivery system, Nanoscale Res. Lett. 5 (2010) 224–230; DOI: 10.1007/s11671-009-9469-5.10.1007/s11671-009-9469-5289419320652152Search in Google Scholar

38. S. A. Abraham, K. Edwards, G. Karlsson, S. MacIntosh, L. D. Mayer, C. McKenzie and M. B. Bally, Formation of transition metal-doxorubicin complexes inside liposomes, Biochim. Biophys. Acta1565 (2002) 41–54; DOI: 10.1016/S0005-2736(02)00507-2.10.1016/S0005-2736(02)00507-2Search in Google Scholar

39. M. Ciobanu, B. Heurtault, P. Schultz, C. Ruhlmann, C. D. Muller and B. Frisch, Layersome: development and optimization of stable liposomes as drug delivery system, Int. J. Pharm. 344 (2007) 54–57; DOI: 10.1016/j.ijpharm.2007. in Google Scholar

40. H. Teixeira, C. Dubernet, V. Rosilio, S. Benita, J. Lepault, I. Erk and P. Couvreur, New bicompartmental structures are observed when stearylamine is mixed with triglyceride emulsions, Pharm. Res. 17 (2000) 1329–1332; DOI: 10.1023/A:1026416208482.10.1023/A:1026416208482Search in Google Scholar

41. K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann and K. Mäder, Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy, J. Control. Release95 (2004) 217–227; DOI: 10.1016/j.jconrel.2003.11.01210.1016/j.jconrel.2003.11.01214980770Search in Google Scholar

42. A. Graf, E. Ablinger, S. Peters, A. Zimmer, S. Hook and T. Rades, Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides, Int. J. Pharm. 350 (2008) 351–360; DOI: 10.1016/j.ijpharm.2007. in Google Scholar

43. G. De Rosa, M. De Stefano, F. Ungaro and M. I. La Rotonda, Cold field emission gun-scanning electron microscopy: a new tool for morphological and ultrastructural analysis of liposomes, Int. J. Pharm. 362 (2008) 189–192; DOI: 10.1016/j.ijpharm.2008. in Google Scholar

44. A. Saupe, K. C. Gordon and T. Rades, Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy, Int. J. Pharm. 314 (2006) 56–62; DOI: 10.1016/j.ijpharm.2006. in Google Scholar

45. N. G. Eskandar, S. Simovic and C. A. Prestidge, Nanoparticle coated submicron emulsions: sustained in-vitro release and improved dermal delivery of all-trans-retinol, Pharm. Res. 26 (2009) 1764–1775; DOI: 10.1007/s11095-009-9888-0.10.1007/s11095-009-9888-019384464Search in Google Scholar

46. Y. Perrie, A. U. Mohammed, A. Vangala and S. E. McNeil, Environmental scanning electron microscopy offers real-time morphological analysis of liposomes and niosomes, J. Liposome Res. 17 (2007) 27–37; DOI: 10.1080/08982100601186508.10.1080/0898210060118650817454401Search in Google Scholar

47. A. Bogner, G. Thollet, D. Basset, P. H. Jouneau and C. Gauthier, Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase, Ultramicroscopy104 (2005) 290–301; DOI: 10.1016/j.ultramic.2005. in Google Scholar

48. J. Sitterberg, A. Özcetin, C. Ehrhardt and U. Bakowsky, Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems, Eur. J. Pharm. Biopharm.74 (2010) 2–13; DOI: 10.1016/j.ejpb.2009. in Google Scholar

49. B. Ruozi, G. Tosi, E. Leo and M. A. Vandelli, Application of atomic force microscopy to characterize liposomes as drug and gene carriers, Talanta73 (2007) 12–22; DOI: 10.1016/j.talanta.2007. in Google Scholar

50. X. Liang, G. Mao and K. Y. Ng, Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy, J. Colloid Interface Sci. 278 (2004) 53–62; DOI: 10.1016/j.jcis.2004. in Google Scholar

51. C. Preetz, A. Hauser, G. Hause, A. Kramer and K. Mäder, Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: distinction of nanoemulsions from nanocapsules, Eur. J. Pharm. Sci. 39 (2010) 141–151; DOI: 10.1016/j.ejps.2009. in Google Scholar

52. T. Tran, T. C. Kupiec and L. A. Trissel, Quality-control analytical methods: particulate matter in injections: what is it and what are the concerns?, Int. J. Pharm. Compd.10 (2006) 202–204.Search in Google Scholar

53. S. E. Langille, Particulate matter in injectable drug products, PDA J. Pharm. Sci. Technol.67 (2013) 186–200; DOI: 10.5731/pdajpst.2013.00922.10.5731/pdajpst.2013.0092223752747Search in Google Scholar

54. Ch. M. Hoo, N. Starostin, P. West and M. L. Mecartney, A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions, J. Nanopart. Res.10 (2008) 89–96; DOI: 10.1007/s11051-008-9435-7.10.1007/s11051-008-9435-7Search in Google Scholar

55. H. Kato, A. Nakamura and N. Noda, Determination of size distribution of silica nanoparticles: a comparison of scanning electron microscopy, dynamic light scattering, and flow-field-flow fractionation with multiangle light scattering methods, Mater. Express4 (2014) 144–152; DOI: 10.1166/mex.2014.1150.10.1166/mex.2014.1150Search in Google Scholar

56. V. Klang, C. Valenta and N. B. Matsko, Electron microscopy of pharmaceutical systems, Micron44 (2013) 45–74; DOI: 10.1016/j.micron.2012. in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo