1. bookVolume 65 (2015): Edizione 4 (December 2015)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Modulation of brain glutamate dehydrogenase as a tool for controlling seizures

Pubblicato online: 17 Dec 2015
Volume & Edizione: Volume 65 (2015) - Edizione 4 (December 2015)
Pagine: 443 - 452
Accettato: 14 Jul 2015
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. H. S. White, M. D. Smith and K. S. Wilcox, Mechanisms of action of antiepileptic drugs, Int. Rev. Neurobiol. 81 (2007) 85-110; DOI: 10.1016/S0074-7742(06)81006-82.Search in Google Scholar

2. B. S. Meldrum, The role of glutamate in epilepsy and other CNS disorders, Neurology 44 (1994) S14-S23.Search in Google Scholar

3. U . Heinemann, D. Kaufer and A. Friedman, Blood-brain barrier dysfunction, TGFbeta signaling, and astrocyte dysfunction in epilepsy, Glia 60 (2012) 1251-1257; DOI: 10.1002/glia.22311.10.1002/glia.22311361524822378298Search in Google Scholar

4. D. A. Coulter and T. Eid, Astrocytic regulation of glutamate homeostasis in epilepsy, Glia 60 (2012) 1215-1226; DOI: 10.1002/glia.22341.10.1002/glia.22341337538622592998Search in Google Scholar

5. A. Vezzani, J. French, T. Bartfai and T. Z. Baram, The role of inflammation in epilepsy, Nat. Rev. Neurol. 7 (2011) 31-40; DOI: 10.1038/nrneurol.2010.178.10.1038/nrneurol.2010.178337805121135885Search in Google Scholar

6. R . M. Kaminski, M. A. Rogawski and H. Klitgaard, The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments, Neurotherapeutics 11 (2014) 385-400; DOI: 10.1007/s13311-014-0266-1.10.1007/s13311-014-0266-1399612524671870Search in Google Scholar

7. H. E. Scharfman, Neuroscience. Metabolic control of epilepsy, Science 347 (2015) 1312-1313; DOI: 10.1126/science.aaa9607.10.1126/science.aaa960725792315Search in Google Scholar

8. N . Sada, S. Lee, T. Katsu, T. Otsuki and T. Inoue, Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy, Science 347 (2015) 1362-1367; DOI: 10.1126/science.aaa1299.10.1126/science.aaa129925792327Search in Google Scholar

9. B. S. Meldrum and M. A. Rogawski, Molecular targets for antiepileptic drug development, Neurotherapeutics 4 (2007) 18-61.10.1016/j.nurt.2006.11.010185243617199015Search in Google Scholar

10. A. Plaitakis, P. Flessas, A. B. Natsiou and P. Shashidharan, Glutamate dehydrogenase deficiency in cerebellar degenerations: clinical, biochemical and molecular genetic aspects, Can. J. Neurol. Sci. 20 (1993) S109-S116.10.1017/S0317167100048617Search in Google Scholar

11. G. H. Malthankar-Phatak, N. de Lanerolle, T. Eid, D. D. Spencer, K. L. Behar, S. S. Spencer, J. H. Kim and J. C. Lai, Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy, Epilepsia 47 (2006) 1292-1299; DOI: 10.1111/j.1528-1167.2006.00543.x.10.1111/j.1528-1167.2006.00543.x16922873Search in Google Scholar

12. D. M. Raizen, A. Brooks-Kayal, L. Steinkrauss, G. I. Tennekoon, C. A. Stanley and A. Kelly, Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations, J. Pediatr. 146 (2005) 388-394; DOI: 10.1016/j.jpeds.2004.10.040.10.1016/j.jpeds.2004.10.04015756227Search in Google Scholar

13. S . Balasubramaniam, R. Kapoor, J. H. Yeow, P. G. Lim, S. Flanagan, S. Ellard and K. Hussain, Biochemical evaluation of an infant with hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene and hyperinsulinism-hyperammonemia syndrome, J. Pediatr. Endocrinol. Metab. 24 (2011) 573-577.10.1515/jpem.2011.057Search in Google Scholar

14. N . Bahi-Buisson, E. Roze, C. Dionisi, F. Escande, V. Valayannopoulos, F. Feillet, C. Heinrichs, B. Chadefaux-Vekemans, B. Dan and P. de Lonlay, Neurological aspects of hyperinsulinism-hyperammonaemia syndrome, Dev. Med. Child. Neurol. 50 (2008) 945-949; DOI: 10.1111/j.1469-8749. 2008.03114.x.Search in Google Scholar

15. K. Aso, Y. Okano, T. Takeda, O. Sakamoto, K. Ban, K. Iida, T. Yamano and H. Shintaku, Spectrum of glutamate dehydrogenase mutations in Japanese patients with congenital hyperinsulinism and hyperammonemia syndrome, Osaka City Med. J. 57 (2011) 1-9.Search in Google Scholar

16. A. L. Sherwin, Neuroactive amino acids in focally epileptic human brain: a review, Neurochem. Res. 24 (1999) 1387-1395; DOI: 10.1023/A:1022580506443.10.1023/A:1022580506443Search in Google Scholar

17. L. A. Vega Rasgado, G. Ceballos Reyes G and F. Vega-Diaz, Anticonvulsant drugs, brain glutamate dehydrogenase activity and oxygen consumption, ISRN Pharmacol. 2012 (2012) 295853-295860.10.5402/2012/295853Search in Google Scholar

18. L. A. Vega Rasgado, G. Ceballos Reyes G and F. Vega-Díaz, Effect of convulsant drugs in GDH activity and oxygen consumption in mouse brain, J. Med. Med. Sci. 4 (2013) 34-42Search in Google Scholar

19. H. J. Strecker, Glutamic dehydrogenase, Arch. Biochem. Biophys. 46 (1953) 128-140; DOI: 10.1016/0003-9861(53)90176-3. 10.1016/0003-9861(53)90176-3Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo