This work is licensed under the Creative Commons Attribution 4.0 International License.
Al-Hadhrami L.M., 2013. Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews 27: 305–314. DOI 10.1016/j.rser.2013.04.034.Al-HadhramiL.M.2013. Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews27: 305–314. DoI 10.1016/j.rser.2013.04.034.Open DOISearch in Google Scholar
Andargie M.S., Touchie M., O’Brien W., 2019. A review of factors affecting occupant comfort in multi-unit residential buildings. Building and Environment 160: 106182. DOI 10.1016/j.buildenv.2019.106182.AndargieM.S.TouchieM.O’BrienW.2019. A review of factors affecting occupant comfort in multi-unit residential buildings. Building and Environment160: 106182. DoI 10.1016/j.buildenv.2019.106182.Open DOISearch in Google Scholar
Andrade C., Mourato S., Ramos J., 2021. Heating and cooling degree-days climate change projections for Portugal. Atmosphere 12(6): 715. DOI 10.3390/atmos12060715.AndradeC.MouratoS.RamosJ.2021. Heating and cooling degree-days climate change projections for Portugal. Atmosphere12(6): 715. DoI 10.3390/atmos12060715.Open DOISearch in Google Scholar
Atalla T., Gualdi S., Lanza A., 2018. A global degree days database for energy-related applications. Energy 143: 1048–1055. DOI 10.1016/j.energy.2017.10.134.AtallaT.GualdiS.LanzaA.2018. A global degree days database for energy-related applications. Energy143: 1048–1055. DoI 10.1016/j.energy.2017.10.134.Open DOISearch in Google Scholar
Badescu V., Zamfir E., 1999. Degree-days, degree-hours and ambient temperature bin data from monthly average temperatures (in Romania). Energy Conversion and Management 40: 885–900. DOI 10.1016/S0196-8904(98)00148-4.BadescuV.ZamfirE.1999. Degree-days, degree-hours and ambient temperature bin data from monthly average temperatures (in Romania). Energy Conversion and Management40: 885–900. DoI 10.1016/S0196-8904(98)00148-4.Open DOISearch in Google Scholar
Belova I.N., Ginzburg A.S., Krivenok L.A., 2018. Heating seasons length and degree days trends in Russian cities during last half century. Energy Procedia 149: 373–379. DOI 10.1016/j.egypro.2018.08.201.BelovaI.N.GinzburgA.S.KrivenokL.A.2018. Heating seasons length and degree days trends in Russian cities during last half century. Energy Procedia149: 373–379. DoI 10.1016/j.egypro.2018.08.201.Open DOISearch in Google Scholar
Bilgili M., Canpolat C., Pinar E., Sahin B., 2023. Analysis of heating degree-days (HDD) data using machine learning and conventional time series methods. Theoretical and Applied Climatology 154(1): 141–160. DOI 10.1007/s00704-023-04543-9.BilgiliM.CanpolatC.PinarE.SahinB.2023. Analysis of heating degree-days (HDD) data using machine learning and conventional time series methods. Theoretical and Applied Climatology154(1): 141–160. DoI 10.1007/s00704-023-04543-9.Open DOISearch in Google Scholar
Buyukalaca O., Bulut H., Yilmaz T., 2001. Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy 69: 269–283. DOI 10.1016/S0306-2619(01)00017-4.BuyukalacaO.BulutH.YilmazT.2001. Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy69: 269–283. DoI 10.1016/S0306-2619(01)00017-4.Open DOISearch in Google Scholar
Caia J., Jiang Z., 2008. Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China. Renewable and Sustainable Energy Reviews 12: 1667–1680. DOI 10.1016/j.rser.2007.03.002.CaiaJ.JiangZ.2008. Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China. Renewable and Sustainable Energy Reviews12: 1667–1680. DoI 10.1016/j.rser.2007.03.002.Open DOISearch in Google Scholar
De Rosa M., Bianco V., Scarpa F., Tagliafico L.A., 2015. Historical trends and current state of heating and cooling degree days in Italy. Energy Conversion and Management 90: 323–335. DOI 10.1016/j.enconman.2014.11.022.De RosaM.BiancoV.ScarpaF.TagliaficoL.A.2015. Historical trends and current state of heating and cooling degree days in Italy. Energy Conversion and Management90: 323–335. DoI 10.1016/j.enconman.2014.11.022.Open DOISearch in Google Scholar
Deroubaix A., Labuhn I., Camredon M., Gaubert B., Monerie P.A., Popp M., Ramarohetra J., Ruprich-Robert J., Silvers L.G., Siour G., 2021. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nature Communications 12(1): 5197. DOI 10.1038/s41467-021-25504-8.DeroubaixA.LabuhnI.CamredonM.GaubertB.MonerieP.A.PoppM.RamarohetraJ.Ruprich-RobertJ.SilversL.G.SiourG.2021. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nature Communications12(1): 5197. DoI 10.1038/s41467-021-25504-8.Open DOISearch in Google Scholar
EC [European Commission], 2023. Population structure in European Union. Online: ec.europa.eu/eurostat/(accessed 13 December 2023).EC [European Commission], 2023. Population structure in European Union. Online: ec.europa.eu/eurostat/(accessed 13 December 2023).Search in Google Scholar
ECA&D Database, 2023. Online: www.ecad.eu (accessed 1 September 2023).ECA&D Database, 2023. Online: www.ecad.eu (accessed 1 September 2023).Search in Google Scholar
Environment Canada., 1988. Handbook on climate data sources of the atmospheric environment service. Canadian Climate Centre, Ottawa, Canada.Environment Canada., 1988. Handbook on climate data sources of the atmospheric environment service. Canadian Climate Centre, Ottawa, Canada.Search in Google Scholar
Ewing R., Rong F., 2008. The impact of urban form on US residential energy use. Housing Policy Debate 19(1): 45–52. DOI 10.1080/10511482.2008.9521624.EwingR.RongF.2008. The impact of urban form on US residential energy use. Housing Policy Debate19(1): 45–52. DoI 10.1080/10511482.2008.9521624.Open DOISearch in Google Scholar
Harvey L.D., 2020. Using modified multiple heating-degree-day (HDD) and cooling-degree-day (CDD) indices to estimate building heating and cooling loads. Energy and Buildings 229: 110475. DOI 10.1016/j.en-build.2020.110475.HarveyL.D.2020. Using modified multiple heating-degree-day (HDD) and cooling-degree-day (CDD) indices to estimate building heating and cooling loads. Energy and Buildings229: 110475. DoI 10.1016/j.en-build.2020.110475.Open DOISearch in Google Scholar
Hauke J., Kossowski T., 2011. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae 30(2): 87–93. DOI 10.2478/v10117-011-0021-1.HaukeJ.KossowskiT.2011. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae30(2): 87–93. DoI 10.2478/v10117-011-0021-1.Open DOISearch in Google Scholar
IMGW-PIB, 2023. [Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy], Baza danych. Online: danepubliczne.imgw.pl/datastore (accessed 1 September 2023).IMGW-PIB, 2023. [Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy], Baza danych. Online: danepubliczne.imgw.pl/datastore (accessed 1 September 2023).Search in Google Scholar
Indraganti M., Boussaa D., 2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engi-neering Research and Technology 38(3): 327–350. DOI 10.1177/0143624416681383.IndragantiM.BoussaaD.2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engi-neering Research and Technology38(3): 327–350. DoI 10.1177/0143624416681383.Open DOISearch in Google Scholar
IPCC., 2022. Summary for policymakers. In: Pörtner H.-O., Roberts D.C., Poloczanska E.S., Mintenbeck K., Tignor M., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 3–33. DOI 10.1017/9781009325844.001.IPCC., 2022. Summary for policymakers. In: PörtnerH.-O.RobertsD.C.PoloczanskaE.S.MintenbeckK.TignorM.AlegríaA.CraigM.LangsdorfS.LöschkeS.MöllerV.OkemA.RamaB. (eds), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 3–33. DoI 10.1017/9781009325844.001.Open DOISearch in Google Scholar
Klein Tank A.M.G., Wijngaard J.B., Können G.P., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., Müller-Westermeier G., Tzanakou M., Szalai S., Pálsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., van Engelen A.F.V., Forland E., Mietus M., Coelho F., Mares C., Razuvaev V., Nieplova E., Cegnar T., López J.A., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L.V., Petrovic P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 22(12): 1441–1453. DOI 10.1002/joc.773.Klein TankA.M.G.WijngaardJ.B.KönnenG.P.BöhmR.DemaréeG.GochevaA.MiletaM.PashiardisS.HejkrlikL.Kern-HansenC.HeinoR.BessemoulinP.Müller-WestermeierG.TzanakouM.SzalaiS.PálsdóttirT.FitzgeraldD.RubinS.CapaldoM.MaugeriM.LeitassA.BukantisA.AberfeldR.van EngelenA.F.V.ForlandE.MietusM.CoelhoF.MaresC.RazuvaevV.NieplovaE.CegnarT.LópezJ.A.DahlströmB.MobergA.KirchhoferW.CeylanA.PachaliukO.AlexanderL.V.PetrovicP.2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology22(12): 1441–1453. DoI 10.1002/joc.773.Open DOISearch in Google Scholar
Kodah Z.H., El-Shaarawi M.A.I., 1990. Weather data in Jordan for conventional and solar HVAC systems. ASHRAE Transactions 96(1): 124–131.KodahZ.H.El-ShaarawiM.A.I.1990. Weather data in Jordan for conventional and solar HVAC systems. ASHRAE Transactions96(1): 124–131.Search in Google Scholar
Kohler M., Blond N., Clappier A., 2016. A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy 184: 40–54. DOI 10.1016/j.apenergy.2016.09.075.KohlerM.BlondN.ClappierA.2016. A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy184: 40–54. DoI 10.1016/j.apenergy.2016.09.075.Open DOISearch in Google Scholar
Kolokotroni M., Ren X., Davies M., Mavrogianni A., 2012. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build 47: 302–311. DOI 10.1016/j.enbuild.2011.12.019.KolokotroniM.RenX.DaviesM.MavrogianniA.2012. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build47: 302–311. DoI 10.1016/j.enbuild.2011.12.019.Open DOISearch in Google Scholar
Kożuchowski K. (ed), 2000. Pory roku w Polsce. Sezonowe zmiany w środowisku a wieloletnie zmiany klimatyczne. Łodź.KożuchowskiK. (ed), 2000. Pory roku w Polsce. Sezonowe zmiany w środowisku a wieloletnie zmiany klimatyczne. Łodź.Search in Google Scholar
Li Y., Li J., Xu A., Feng Z., Hu C., Zhao G., 2021. Spatial-temporal changes and associated determinants of global heating degree days. International Journal of Environmental Research and Public Health 18(12): 6186. DOI 10.3390/ijerph18126186.LiY.LiJ.XuA.FengZ.HuC.ZhaoG.2021. Spatial-temporal changes and associated determinants of global heating degree days. International Journal of Environmental Research and Public Health18(12): 6186. DoI 10.3390/ijerph18126186.Open DOISearch in Google Scholar
Liu D., Zhao F.Y., Tang G.F., 2010. Active low-grade energy recovery potential for building energycon servation. Renewable and Sustainable Energy Reviews 14(9): 2736–2747. DOI 10.1016/j.rser.2010.06.005.LiuD.ZhaoF.Y.TangG.F.2010. Active low-grade energy recovery potential for building energycon servation. Renewable and Sustainable Energy Reviews14(9): 2736–2747. DoI 10.1016/j.rser.2010.06.005.Open DOISearch in Google Scholar
Livada I., Pyrgou A., Haddad S., Sadeghi M., Santamouris M., 2021. Recent climatic trends and analysis of monthly heating and cooling degree hours in Sydney. Climate 9(9): 114. DOI 10.3390/CLI9070114.LivadaI.PyrgouA.HaddadS.SadeghiM.SantamourisM.2021. Recent climatic trends and analysis of monthly heating and cooling degree hours in Sydney. Climate9(9): 114. DoI 10.3390/CLI9070114.Open DOISearch in Google Scholar
MacDonald H., Pedlar J., McKenney D.W., Lawrence K., de Boer K., Hutchinson M.F., 2023. Heating degree day spatial datasets for Canada. Data in Brief 49: 109450. DOI 10.1016/j.dib.2023.109450.MacDonaldH.PedlarJ.McKenneyD.W.LawrenceK.de BoerK.HutchinsonM.F.2023. Heating degree day spatial datasets for Canada. Data in Brief49: 109450. DoI 10.1016/j.dib.2023.109450.Open DOISearch in Google Scholar
Magli S., Lodi C., Lombroso L., Muscio A., Teggi S., 2015. Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering 6: 91–99. DOI 10.1007/s40095-014-0154-9.MagliS.LodiC.LombrosoL.MuscioA.TeggiS.2015. Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering6: 91–99. DoI 10.1007/s40095-014-0154-9.Open DOISearch in Google Scholar
Mourshed M., 2011. The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Applied Energy 88: 3737– 3746. DOI 10.1016/j.apenergy.2011.05.024.MourshedM.2011. The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Applied Energy88: 3737–3746. DoI 10.1016/j.apenergy.2011.05.024.Open DOISearch in Google Scholar
Moustris K.P., Nastos P.T., Bartzokas A., Larissi I.K., Zacha-ria P.T., Paliatsos A.G., 2015. Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theoretical and Applied Climatology 122: 517–529. DOI 10.1007/s00704-014-1308-7.MoustrisK.P.NastosP.T.BartzokasA.LarissiI.K.Zacha-riaP.T.PaliatsosA.G.2015. Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theoretical and Applied Climatology122: 517–529. DoI 10.1007/s00704-014-1308-7.Open DOISearch in Google Scholar
Oke T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1–24. DOI 10.1002/qj.49710845502.OkeT.R.1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society108(455): 1–24. DoI 10.1002/qj.49710845502.Open DOISearch in Google Scholar
Oke T.R., Johnson G.T., Steyn D.G., Watson I.D., 1991. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Boundary-Layer Meteoroloy 56: 339–358. DOI 10.1007/BF00119211.OkeT.R.JohnsonG.T.SteynD.G.WatsonI.D.1991. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Boundary-Layer Meteoroloy56: 339–358. DoI 10.1007/BF00119211.Open DOISearch in Google Scholar
Oke T.R., Mills G., Christen A., Voogt J.A., 2017. Urban climates. Cambridge University Press, Cambridge, UK, ISBN: 978-1-107-42953-6.OkeT.R.MillsG.ChristenA.VoogtJ.A., 2017. Urban climates. Cambridge University Press, Cambridge, UK, ISBN: 978-1-107-42953-6.Search in Google Scholar
Ortiz Beviá M.J., Sánchez-López G., Alvarez-Garcìa F.J., Ruizde Elvira A., 2012. Evolution of heating and cooling degree-days in Spain: Trends and interannual variability. Global and Planetary Change 92–93: 236–247. DOI 10.1016/j.gloplacha.2012.05.023.Ortiz BeviáM.J.Sánchez-LópezG.Alvarez-GarcìaF.J.Ruizde ElviraA.2012. Evolution of heating and cooling degree-days in Spain: Trends and interannual variability. Global and Planetary Change92–93: 236–247. DoI 10.1016/j.gloplacha.2012.05.023.Open DOISearch in Google Scholar
Papakostas K., Kyriakis N., 2005. Heating and cooling degree-hours for Athens and Thessaloniki, Greece. Renewable Energy 30(12): 1873–1880. DOI 10.1016/j. renene.2004.12.002.PapakostasK.KyriakisN.2005. Heating and cooling degree-hours for Athens and Thessaloniki, Greece. Renewable Energy30(12): 1873–1880. DoI 10.1016/j. renene.2004.12.002.Open DOISearch in Google Scholar
Papakostas K., Mavromatis T., Kyriakis N., 2010. Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy 35: 1376–1379. DOI 10.1016/j. renene.2009.11.012.PapakostasK.MavromatisT.KyriakisN.2010. Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy35: 1376–1379. DoI 10.1016/j. renene.2009.11.012.Open DOISearch in Google Scholar
Petri Y., Caldeira K., 2015. Impacts of global warming on residential heating and cooling degree-days in the United States. Scientific Reports 5(1): 12427. DOI 10.1038/srep12427.PetriY.CaldeiraK.2015. Impacts of global warming on residential heating and cooling degree-days in the United States. Scientific Reports5(1): 12427. DoI 10.1038/srep12427.Open DOISearch in Google Scholar
Ramon D., Allacker K., De Troyer F., Wouters H., van Lipzig N.P., 2020. Future heating and cooling degree days for Belgium under a high-end climate change scenario. Energy Build 216: 109935. DOI 10.1016/j.enbuild.2020.109935.RamonD.AllackerK.De TroyerF.WoutersH.van LipzigN.P.2020. Future heating and cooling degree days for Belgium under a high-end climate change scenario. Energy Build216: 109935. DoI 10.1016/j.enbuild.2020.109935.Open DOISearch in Google Scholar
Sadeqi A., Tabari H., Dinpashoh Y., 2022. Spatio-temporal analysis of heating and cooling degree-days over Iran. Stochastic Environmental Research and Risk Assessment 36: 869–891. DOI 10.1007/s00477-021-02064-3.SadeqiA.TabariH.DinpashohY.2022. Spatio-temporal analysis of heating and cooling degree-days over Iran. Stochastic Environmental Research and Risk Assessment36: 869–891. DoI 10.1007/s00477-021-02064-3.Open DOISearch in Google Scholar
Santamouris M., Papnikolaou N., Livada I., Koronakis I., Georgakis C., Argiriou A., Assimakopoulos D.N., 2001. On the impact of urban climate on the energy consumption of buildings. Solar Energy 70(3): 201–216. DOI 10.1016/S0038-092X(00)00095-5.SantamourisM.PapnikolaouN.LivadaI.KoronakisI.GeorgakisC.ArgiriouA.AssimakopoulosD.N.2001. On the impact of urban climate on the energy consumption of buildings. Solar Energy70(3): 201–216. DoI 10.1016/S0038-092X(00)00095-5.Open DOISearch in Google Scholar
Shen X., Liu B., 2016. Changes in timing, length and heating degree days of the heating season in central heating zone of China. Scientific Reports 6: 33384. DOI 10.1038/srep33384.ShenX.LiuB.2016. Changes in timing, length and heating degree days of the heating season in central heating zone of China. Scientific Reports6: 33384. DoI 10.1038/srep33384.Open DOISearch in Google Scholar
Shen X., Liu B., Zhou D., 2017. Spatiotemporal changes in the length and heating degree days of the heating period in Northeast China. Meteorological Applications 24(1): 135–141. DOI 10.1002/met.1612.ShenX.LiuB.ZhouD.2017. Spatiotemporal changes in the length and heating degree days of the heating period in Northeast China. Meteorological Applications24(1): 135–141. DoI 10.1002/met.1612.Open DOISearch in Google Scholar
Spinoni J., Vogt J.V., Barbosa P., Dosio A., McCormick N., Bigano A., Füssel H.-M., 2018. Changes of heating and cooling degree-days in Europe from 1981 to 2100. International Journal of Climatology 38: e191–e208. DOI 10.1002/joc.5362.SpinoniJ.VogtJ.V.BarbosaP.DosioA.McCormickN.BiganoA.FüsselH.-M.2018. Changes of heating and cooling degree-days in Europe from 1981 to 2100. International Journal of Climatology38: e191–e208. DoI 10.1002/joc.5362.Open DOISearch in Google Scholar
Szyga-Pluta K., Tomczyk A., Piniewski M., Eini M., 2023b. Past and future changes in the start, end, and duration of the growing season in Poland. Acta Geophysica 71: 3041– 3055. DOI 10.1007/s11600-023-01117-1.Szyga-PlutaK.TomczykA.PiniewskiM.EiniM., 2023b. Past and future changes in the start, end, and duration of the growing season in Poland. Acta Geophysica71: 3041–3055. DoI 10.1007/s11600-023-01117-1.Open DOISearch in Google Scholar
Szyga-Pluta K., Tomczyk A., Piotrowicz K., Bednorz E., 2023a. Patterns in the multiannual course of growing season in Central Europe since the end of the 19th century. Quaestiones Geographicae 42(1): 59–74. DOI 10.14746/quageo-2023-0005.Szyga-PlutaK.TomczykA.PiotrowiczK.BednorzE., 2023a. Patterns in the multiannual course of growing season in Central Europe since the end of the 19th century. Quaestiones Geographicae42(1): 59–74. DoI 10.14746/quageo-2023-0005.Open DOISearch in Google Scholar
Szyga-Pluta K., Tomczyk A.M., Bednorz E., Piotrowicz K., 2022. Assessment of climate variations in the growing period in Central Europe since the end of eighteenth century. Theoretical and Applied Climatology 149: 1785–1800. DOI 10.1007/s00704-022-04141-1.Szyga-PlutaK.TomczykA.M.BednorzE.PiotrowiczK.2022. Assessment of climate variations in the growing period in Central Europe since the end of eighteenth century. Theoretical and Applied Climatology149: 1785–1800. DoI 10.1007/s00704-022-04141-1.Open DOISearch in Google Scholar
Ukey R., Rai A.C., 2021. Impact of global warming on heating and cooling degree days in major Indian cities. Energy and Buildings 244: 111050. DOI 10.1016/j.enbuild.2021.111050.UkeyR.RaiA.C.2021. Impact of global warming on heating and cooling degree days in major Indian cities. Energy and Buildings244: 111050. DoI 10.1016/j.enbuild.2021.111050.Open DOISearch in Google Scholar
Ustrnul Z., Wypych A., Czekierda D., 2021. Air temperature change. In: Falarz M. (ed.), Climate change in Poland. Springer Climate. Springer, Cham: 275–330. DOI 10.1007/978-3-030-70328-8_11.UstrnulZ.WypychA.CzekierdaD.2021. Air temperature change. In: FalarzM. (ed.), Climate change in Poland. Springer Climate. Springer, Cham: 275–330. DoI 10.1007/978-3-030-70328-8_11.Open DOISearch in Google Scholar
Verbai Z., Lazar I., Kalmar F., 2014. Heating degree day in Hungary. Environmental Engineering and Management Journal 13(11): 2887–2892. DOI 10.30638/eemj.2014.325.VerbaiZ.LazarI.KalmarF.2014. Heating degree day in Hungary. Environmental Engineering and Management Journal13(11): 2887–2892. DoI 10.30638/eemj.2014.325.Open DOISearch in Google Scholar
Wątroba J., 2007. Przykład statystycznej analizy danych z wykorzystaniem nowych możliwości Statistica 8. In: Wątroba J. (ed.), Zastosowania statystyki i data mining w badaniach naukowych. StatSoft Polska, Kraków: 51–60.WątrobaJ.2007. Przykład statystycznej analizy danych z wykorzystaniem nowych możliwości Statistica 8. In: WątrobaJ. (ed.), Zastosowania statystyki i data mining w badaniach naukowych. StatSoft Polska, Kraków: 51–60.Search in Google Scholar
Wibig J., 2003. Heating degree days and cooling degree days variability in Łódź in the period1931-2000. In: Kłysik K., Oke T.R., Fortuniak K., Grimmond C.S.B., Wibig J. (eds), Fifth International Conference on Urban Climate, 1–5 September 2003. Łódź, Poland. Proceedings 2: 471–474.WibigJ.2003. Heating degree days and cooling degree days variability in Łódź in the period1931-2000. In: KłysikK.OkeT.R.FortuniakK.GrimmondC.S.B.WibigJ. (eds), Fifth International Conference on Urban Climate, 1–5 September 2003. Łódź, Poland. Proceedings 2: 471–474.Search in Google Scholar
Wibig J., Głowicki B., 2002. Trends of minimum and maximum temperature in Poland. Climate Research 20: 123– 133. DOI 10.3354/cr020123.WibigJ.GłowickiB.2002. Trends of minimum and maximum temperature in Poland. Climate Research20: 123–133. DoI 10.3354/cr020123.Open DOISearch in Google Scholar