Accesso libero

Generative Adversarial Approach to Urban Areas’ NDVI Estimation: A Case Study of Łódź, Poland

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adamiak M., Będkowski K., Majchrowska A., 2021. Aerial imagery feature engineering using bidirectional generative adversarial networks: A case study of the Pilica River Region, Poland. Remote Sensing 13(2): 306. DOI 10.3390/rs13020306. AdamiakM. BędkowskiK. MajchrowskaA. 2021 Aerial imagery feature engineering using bidirectional generative adversarial networks: A case study of the Pilica River Region, Poland Remote Sensing 13 2 306 10.3390/rs13020306 Open DOISearch in Google Scholar

Aslahishahri M., Stanley K.G., Duddu H., Shirtliffe S., Vail S., Bett K., Pozniak C., Stavness I., 2021. From RGB to NIR: Predicting of near infrared reflectance from visible spectrum aerial images of crops. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 1312–1322. DOI 10.1109/ICCVW54120.2021.00152. AslahishahriM. StanleyK.G. DudduH. ShirtliffeS. VailS. BettK. PozniakC. StavnessI. 2021 From RGB to NIR: Predicting of near infrared reflectance from visible spectrum aerial images of crops In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 1312 1322 10.1109/ICCVW54120.2021.00152 Open DOISearch in Google Scholar

Bagheri N., Ahmadi H., Alavi Panah S., Omid M., 2013. Multispectral remote sensing for site-specific nitrogen fertilizer management. Pesquisa Agropecuária Brasileira 48: 1394–1401. DOI 10.1590/S0100-204×2013001000011. BagheriN. AhmadiH. Alavi PanahS. OmidM. 2013 Multispectral remote sensing for site-specific nitrogen fertilizer management Pesquisa Agropecuária Brasileira 48 1394 1401 10.1590/S0100-204×2013001000011 Open DOISearch in Google Scholar

Barley A., Town C., 2014. Combinations of feature descriptors for texture image classification. Journal of Data Analysis and Information Processing 2(3): 67–76. DOI 10.4236/jdaip.2014.23009. BarleyA. TownC. 2014 Combinations of feature descriptors for texture image classification Journal of Data Analysis and Information Processing 2 3 67 76 10.4236/jdaip.2014.23009 Open DOISearch in Google Scholar

Barwiński M., 2009. Spatial development and functional changes in Łódź – Geographic, economic and political conditions. Geografia w szkole 6: 38–50. BarwińskiM. 2009 Spatial development and functional changes in Łódź – Geographic, economic and political conditions Geografia w szkole 6 38 50 Search in Google Scholar

Będkowski K., Bielecki A., 2017. Assessment of the availability of greenery in the place of residence in cities using NDVI and the Lorenz's concentration curve. Teledetekcja Środowiska 57: 5–14. BędkowskiK. BieleckiA. 2017 Assessment of the availability of greenery in the place of residence in cities using NDVI and the Lorenz's concentration curve Teledetekcja Środowiska 57 5 14 Search in Google Scholar

Chai T., Draxler R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development 7(3): 1247–1250. DOI 10.5194/gmd-7-1247-2014. ChaiT. DraxlerR.R. 2014 Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature Geoscientific Model Development 7 3 1247 1250 10.5194/gmd-7-1247-2014 Open DOISearch in Google Scholar

Chew W.C., Hashim M., Lau A.M.S., Battay A.E., Kang C.S., 2014. Early detection of plant disease using close range sensing system for input into digital earth environment. IOP Conference Series: Earth and Environmental Science 18: 012143. DOI 10.1088/1755-1315/18/1/012143. ChewW.C. HashimM. LauA.M.S. BattayA.E. KangC.S. 2014 Early detection of plant disease using close range sensing system for input into digital earth environment IOP Conference Series: Earth and Environmental Science 18 012143 10.1088/1755-1315/18/1/012143 Open DOISearch in Google Scholar

Chollet F., 2017. Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357 [cs], April. Online: http://arxiv.org/abs/1610.02357. CholletF. 2017 Xception: Deep learning with depthwise separable convolutions arXiv:1610.02357 [cs], April. Online: http://arxiv.org/abs/1610.02357. Search in Google Scholar

Davis C.H., Wang X., 2011. High-resolution DEMS for urban applications from NAPP photography. Photogrammetric Engineering and Remote Sensing 67: 4–11. DavisC.H. WangX. 2011 High-resolution DEMS for urban applications from NAPP photography Photogrammetric Engineering and Remote Sensing 67 4 11 Search in Google Scholar

Deering D., 1978. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Thesis, Texas A&M University. Libraries. Online: https://oaktrust.library.tamu.edu/handle/1969.1/DISSERTATIONS-253780. DeeringD. 1978 Rangeland reflectance characteristics measured by aircraft and spacecraft sensors Thesis, Texas A&M University. Libraries Online: https://oaktrust.library.tamu.edu/handle/1969.1/DISSERTATIONS-253780. Search in Google Scholar

Dematteis N., Giordan D., 2021. Comparison of digital image correlation methods and the impact of noise in geoscience applications. Remote Sensing 13(2): 327. DOI 10.3390/rs13020327. DematteisN. GiordanD. 2021 Comparison of digital image correlation methods and the impact of noise in geoscience applications Remote Sensing 13 2 327 10.3390/rs13020327 Open DOISearch in Google Scholar

Demir U., Unal G., 2018. Patch-based image inpainting with generative adversarial networks. arXiv:1803.07422 [cs]. Online: http://arxiv.org/abs/1803.07422. DemirU. UnalG. 2018 Patch-based image inpainting with generative adversarial networks arXiv:1803.07422 [cs]. Online: http://arxiv.org/abs/1803.07422. Search in Google Scholar

Donahue J., Simonyan K., 2019. Large scale adversarial representation learning. arXiv:1907.02544 [cs, stat]. Online: http://arxiv.org/abs/1907.02544. DonahueJ. SimonyanK. 2019 Large scale adversarial representation learning arXiv:1907.02544 [cs, stat]. Online: http://arxiv.org/abs/1907.02544. Search in Google Scholar

Dong J., Yin R., Sun X., Li Q., Yang Y., Qin X., 2019. Inpainting of remote sensing SST images with deep convolutional generative adversarial network. IEEE Geoscience and Remote Sensing Letters 16(2): 173–177. DOI 10.1109/LGRS.2018.2870880. DongJ. YinR. SunX. LiQ. YangY. QinX. 2019 Inpainting of remote sensing SST images with deep convolutional generative adversarial network IEEE Geoscience and Remote Sensing Letters 16 2 173 177 10.1109/LGRS.2018.2870880 Open DOISearch in Google Scholar

EnviroSolutions Sp. z o.o. – Michał Włoga., 2021. Pobieracz danych GUGiK. Online: https://plugins.qgis.org/plugins/pobieracz_danych_gugik/. EnviroSolutions Sp. z o.o. – Michał Włoga 2021 Pobieracz danych GUGiK Online: https://plugins.qgis.org/plugins/pobieracz_danych_gugik/. Search in Google Scholar

Geoportal, 2021. Online: http://geoportal.gov.pl. Geoportal 2021 Online: http://geoportal.gov.pl. Search in Google Scholar

Gu Y., Brown J., Verdin J., Wardlow B., 2007. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central great plains of the United States. Geophysical Research Letters 34(6). DOI 10.1029/2006GL029127. GuY. BrownJ. VerdinJ. WardlowB. 2007 A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central great plains of the United States Geophysical Research Letters 34 6 10.1029/2006GL029127 Open DOISearch in Google Scholar

Haralick R.M., Shanmugam K., Dinstein I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC 3(6): 610–621. DOI 10.1109/TSMC.1973.4309314. HaralickR.M. ShanmugamK. DinsteinI. 1973 Textural features for image classification IEEE Transactions on Systems, Man, and Cybernetics SMC 3 6 610 621 10.1109/TSMC.1973.4309314 Open DOISearch in Google Scholar

Hatfield J., Prueger J., 2010. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing 2(2): 562–578. DOI 10.3390/rs2020562. HatfieldJ. PruegerJ. 2010 Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices Remote Sensing 2 2 562 578 10.3390/rs2020562 Open DOISearch in Google Scholar

Head Office of Geodesy and Cartography., b.d. Integrated copies of databases of topographic objects. Główny Urząd Geodezji i Kartografii. Główny Urząd Geodezji i Kartografii. Online: https://www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot (accessed 11 November 2020) Head Office of Geodesy and Cartography b.d. Integrated copies of databases of topographic objects. Główny Urząd Geodezji i Kartografii Główny Urząd Geodezji i Kartografii Online: https://www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot (accessed 11 November 2020) Search in Google Scholar

Head Office of Geodesy and Cartography., b.d. Online: https://www.gov.pl/web/gugik-en (accessed 8 August 2022). Head Office of Geodesy and Cartography b.d. Online: https://www.gov.pl/web/gugik-en (accessed 8 August 2022). Search in Google Scholar

Herold M., Liu X., Clarke K., 2003. Spatial metrics and image texture for mapping urban land use. Photogrammetric Engineering and Remote Sensing 69: 991–1001. DOI 10.14358/PERS.69.9.991. HeroldM. LiuX. ClarkeK. 2003 Spatial metrics and image texture for mapping urban land use Photogrammetric Engineering and Remote Sensing 69 991 1001 10.14358/PERS.69.9.991 Open DOISearch in Google Scholar

Horé A., Ziou D., 2010. Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, 2366–2369. DOI 10.1109/ICPR.2010.579. HoréA. ZiouD. 2010 Image quality metrics: PSNR vs. SSIM In: 2010 20th International Conference on Pattern Recognition 2366 2369 10.1109/ICPR.2010.579 Open DOISearch in Google Scholar

Hunt E.R., Rock B., 1989. Detection of changes in leaf water content using near – And middle-infrared reflectances. Remote Sensing of Environment 30(1): 43–54. DOI 10.1016/0034-4257(89)90046-1. HuntE.R. RockB. 1989 Detection of changes in leaf water content using near – And middle-infrared reflectances Remote Sensing of Environment 30 1 43 54 10.1016/0034-4257(89)90046-1 Open DOISearch in Google Scholar

Isola P., Zhu J-Y., Zhou T., Efros A., 2017. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004 [cs], November 2021. Online: http://arxiv.org/abs/1611.07004. IsolaP. ZhuJ-Y. ZhouT. EfrosA. 2017 Image-to-image translation with conditional adversarial networks arXiv:1611.07004 [cs], November 2021. Online: http://arxiv.org/abs/1611.07004. Search in Google Scholar

Jackson R., Huete A., 1991. Interpreting vegetation indices. Preventive Veterinary Medicine 11(3): 185–200. DOI 10.1016/S0167-5877(05)80004-2. JacksonR. HueteA. 1991 Interpreting vegetation indices Preventive Veterinary Medicine 11 3 185 200 10.1016/S0167-5877(05)80004-2 Open DOISearch in Google Scholar

Jackson T., Chen M., Cosh M., Li F., Anderson M., Walthall C., Doriaswamy P., Ray Hunt R., 2004. Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 2002 Soil Moisture Experiment (SMEX02), 92(4): 475–482. DOI 10.1016/j.rse.2003.10.021. JacksonT. ChenM. CoshM. LiF. AndersonM. WalthallC. DoriaswamyP. Ray HuntR. 2004 Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans Remote Sensing of Environment, 2002 Soil Moisture Experiment (SMEX02) 92 4 475 482 10.1016/j.rse.2003.10.021 Open DOISearch in Google Scholar

Jarocińska A., Zagajewski B., 2008. Correlations of ground – And airborne-level acquired vegetation indices of the Bystrzanka catchment. Teledetekcja Środowiska 40: 100–124. JarocińskaA. ZagajewskiB. 2008 Correlations of ground – And airborne-level acquired vegetation indices of the Bystrzanka catchment Teledetekcja Środowiska 40 100 124 Search in Google Scholar

Jung A., 2022. Imgaug. Python. Online: https://github.com/aleju/imgaug. JungA. 2022 Imgaug Python Online: https://github.com/aleju/imgaug. Search in Google Scholar

Koza P., 2006. Orientation of Ikonos stereo images and automatic acquisition of height models. Archiwum Fotogrametrii, Kartografii i Teledetekcji 16. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-3514d2c7-31a9-49d8-ad2d-c35825c950f8. KozaP. 2006 Orientation of Ikonos stereo images and automatic acquisition of height models Archiwum Fotogrametrii, Kartografii i Teledetekcji 16 Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-3514d2c7-31a9-49d8-ad2d-c35825c950f8. Search in Google Scholar

Krukowski M., 2018. Modelowanie Kartograficzne w Ocenie Jakości Życia w Mieście – Aspekt Zieleni Miejskiej w Lublinie. Annales Universitatis Mariae Curie-Sklodowska, Sectio B – Geographia, Geologia, Mineralogia et Petrographia 73: 7–27. DOI 10.17951/b.2018.73.0.7-27. KrukowskiM. 2018 Modelowanie Kartograficzne w Ocenie Jakości Życia w Mieście – Aspekt Zieleni Miejskiej w Lublinie Annales Universitatis Mariae Curie-Sklodowska, Sectio B – Geographia, Geologia, Mineralogia et Petrographia 73 7 27 10.17951/b.2018.73.0.7-27 Open DOISearch in Google Scholar

Krukowski M., Cebrykow P., Płusa J., 2016. Classification of green areas in Lublin based on satellite images Ikonos 2. Barometr Regionalny 14(2): 35–44. KrukowskiM. CebrykowP. PłusaJ. 2016 Classification of green areas in Lublin based on satellite images Ikonos 2 Barometr Regionalny 14 2 35 44 Search in Google Scholar

Książek, J., 2018. Study of selected textural features properties on asbestos roof images. Geomatics and Environmental Engineering 12(4). DOI 10.7494/geom.2018.12.4.45. KsiążekJ. 2018 Study of selected textural features properties on asbestos roof images Geomatics and Environmental Engineering 12 4 10.7494/geom.2018.12.4.45 Open DOISearch in Google Scholar

Kuang, W., Dou Y., 2020. Investigating the patterns and dynamics of urban green space in China's 70 major cities using satellite remote sensing. Remote Sensing 12(12): 1929. DOI 10.3390/rs12121929. KuangW. DouY. 2020 Investigating the patterns and dynamics of urban green space in China's 70 major cities using satellite remote sensing Remote Sensing 12 12 1929 10.3390/rs12121929 Open DOISearch in Google Scholar

Kubalska J., Preuss R., 2014. Use of the photogrammetric data for vegetation inventory on urban areas. Archiwum Fotogrametrii, Kartografii i Teledetekcji 26: 75–86. DOI 10.14681/AFKIT.2014.006. KubalskaJ. PreussR. 2014 Use of the photogrammetric data for vegetation inventory on urban areas Archiwum Fotogrametrii, Kartografii i Teledetekcji 26 75 86 10.14681/AFKIT.2014.006 Open DOISearch in Google Scholar

Łachowski W., Łęczek A., 2020. Tereny zielone w dużych miastach Polski. Analiza z wykorzystaniem Sentinel 2. Urban Development Issues 66(1): 77–90. DOI 10.51733/udi.2020.68.07. ŁachowskiW. ŁęczekA. 2020 Tereny zielone w dużych miastach Polski. Analiza z wykorzystaniem Sentinel 2 Urban Development Issues 66 1 77 90 10.51733/udi.2020.68.07 Open DOISearch in Google Scholar

Li P., Cheng T., Guo J., 2009. Multivariate image texture by multivariate variogram for multispectral image classification. Photogrammetric Engineering & Remote Sensing 75(2): 147–157. DOI 10.14358/PERS.75.2.147. LiP. ChengT. GuoJ. 2009 Multivariate image texture by multivariate variogram for multispectral image classification Photogrammetric Engineering & Remote Sensing 75 2 147 157 10.14358/PERS.75.2.147 Open DOISearch in Google Scholar

Li X., Ratti C., 2018. Mapping the spatial distribution of shade provision of street trees in Boston using google street view Panoramas. Urban Forestry & Urban Greening 31: 109–119. DOI 10.1016/j.ufug.2018.02.013. LiX. RattiC. 2018 Mapping the spatial distribution of shade provision of street trees in Boston using google street view Panoramas Urban Forestry & Urban Greening 31 109 119 10.1016/j.ufug.2018.02.013 Open DOISearch in Google Scholar

Marmol U., Lenda G., 2010. Texture filters in the process of automatic object classification. Archiwum Fotogrametrii, Kartografii i Teledetekcji 21: 235–243. MarmolU. LendaG. 2010 Texture filters in the process of automatic object classification Archiwum Fotogrametrii, Kartografii i Teledetekcji 21 235 243 Search in Google Scholar

McPherson G., Xiao Q., van Doorn N., Johnson N., Albers S., Peper P., 2018. Shade factors for 149 taxa of in-leaf urban trees in the USA. Urban Forestry & Urban Greening 31: 204–211. DOI 10.1016/j.ufug.2018.03.001. McPhersonG. XiaoQ. van DoornN. JohnsonN. AlbersS. PeperP. 2018 Shade factors for 149 taxa of in-leaf urban trees in the USA Urban Forestry & Urban Greening 31 204 211 10.1016/j.ufug.2018.03.001 Open DOISearch in Google Scholar

Mirza M., Osindero S., 2014. Conditional generative adversarial nets. arXiv:1411.1784 [cs, stat]. Online: http://arxiv.org/abs/1411.1784. MirzaM. OsinderoS. 2014 Conditional generative adversarial nets arXiv:1411.1784 [cs, stat]. Online: http://arxiv.org/abs/1411.1784. Search in Google Scholar

Müller M., Ekhtiari N., Almeida R., Rieke C., 2020. Super-resolution of multispectral satellite images using convolutional neural networks. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-1–2020 (August): 33–40. DOI 10.5194/isprs-annals-V-1-2020-33-2020. MüllerM. EkhtiariN. AlmeidaR. RiekeC. 2020 Super-resolution of multispectral satellite images using convolutional neural networks In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-1–2020 August 33 40 10.5194/isprs-annals-V-1-2020-33-2020 Open DOISearch in Google Scholar

Myeong S., Nowak D., Hopkins P., Brock R., 2003. Urban cover mapping using digital, high-resolution aerial imagery. Urban Ecosystems 5: 243–256. Online: http://www.fs.usda.gov/treesearch/pubs/18820. MyeongS. NowakD. HopkinsP. BrockR. 2003 Urban cover mapping using digital, high-resolution aerial imagery Urban Ecosystems 5 243 256 Online: http://www.fs.usda.gov/treesearch/pubs/18820. Search in Google Scholar

Nowak D., Greenfield E., 2012. Tree and impervious cover change in U.S. cities. Urban Forestry & Urban Greening 11(1): 21–30. DOI 10.1016/j.ufug.2011.11.005. NowakD. GreenfieldE. 2012 Tree and impervious cover change in U.S. cities Urban Forestry & Urban Greening 11 1 21 30 10.1016/j.ufug.2011.11.005 Open DOISearch in Google Scholar

NumPy documentation. Online: https://numpy.org/doc/stable/reference/generated/numpy.savez.html (accessed 27 January 2022). NumPy documentation Online: https://numpy.org/doc/stable/reference/generated/numpy.savez.html (accessed 27 January 2022). Search in Google Scholar

OpenCV., b.d. Online: https://opencv.org/ (accessed 27 January 2022) OpenCV b.d. Online: https://opencv.org/ (accessed 27 January 2022) Search in Google Scholar

Pluto-Kossakowska J., Władyka M., Tulkowska W., 2018. Assessment of remote sensing image data to identify objects in green and blue infrastructure. Teledetekcja Środowiska T 59. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-9632f302-e255-497e-a9dd-368ea620f9b4. Pluto-KossakowskaJ. WładykaM. TulkowskaW. 2018 Assessment of remote sensing image data to identify objects in green and blue infrastructure Teledetekcja Środowiska T 59. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-9632f302-e255-497e-a9dd-368ea620f9b4. Search in Google Scholar

Pyra M., Adamczyk J., 2018. Object-oriented classification in the inventory of green infrastructure objects on the example of the Ursynów District in Warsaw. Teledetekcja Środowiska T. 59. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8bd759f8-2ab3-4b35-946d-b34b73f28b88. PyraM. AdamczykJ. 2018 Object-oriented classification in the inventory of green infrastructure objects on the example of the Ursynów District in Warsaw Teledetekcja Środowiska T. 59. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8bd759f8-2ab3-4b35-946d-b34b73f28b88. Search in Google Scholar

Rouse J.W., Jr., Haas R.H., Schell J.A., Deering D.W., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Texas A&M Univ. College Station, TX, United States. RouseJ.W.Jr. HaasR.H. SchellJ.A. DeeringD.W. 1973 Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation Texas A&M Univ College Station, TX, United States Search in Google Scholar

Salimans T., Goodfellow I., Zaremba W., Cheung V., Radford A., Chen X., 2016. Improved techniques for training GANs. arXiv:1606.03498 [cs]. Online: http://arxiv.org/abs/1606.03498. SalimansT. GoodfellowI. ZarembaW. CheungV. RadfordA. ChenX. 2016 Improved techniques for training GANs arXiv:1606.03498 [cs]. Online: http://arxiv.org/abs/1606.03498. Search in Google Scholar

Scikit-learn: Machine learning in Python – Scikit-learn 1.0.2 documentation., b.d. Online: https://scikit-learn.org/stable/ (accessed 27 January 2022) Scikit-learn: Machine learning in Python – Scikit-learn 1.0.2 documentation b.d. Online: https://scikit-learn.org/stable/ (accessed 27 January 2022) Search in Google Scholar

Small, C., 2001. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing 22(7): 1305–1334. DOI 10.1080/01431160151144369. SmallC. 2001 Estimation of urban vegetation abundance by spectral mixture analysis International Journal of Remote Sensing 22 7 1305 1334 10.1080/01431160151144369 Open DOISearch in Google Scholar

Statistics Poland., 2020. Statistics of Łódź 2020. Lodz.Stat.Gov.Pl. Online: https://lodz.stat.gov.pl/en/publications/statistical-yearbook/statistics-of-lodz-2020,1,16.html. Statistics Poland 2020 Statistics of Łódź 2020 Lodz.Stat.Gov.Pl Online: https://lodz.stat.gov.pl/en/publications/statistical-yearbook/statistics-of-lodz-2020,1,16.html. Search in Google Scholar

Suarez P., Sappa A., Vintimilla B., 2017. Learning image vegetation index through a conditional generative adversarial network. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), 1–6. DOI 10.1109/ETCM.2017.8247538. SuarezP. SappaA. VintimillaB. 2017 Learning image vegetation index through a conditional generative adversarial network In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM) 1 6 10.1109/ETCM.2017.8247538 Open DOISearch in Google Scholar

Suárez P., Sappa A., Vintimilla B., Hammoud R., 2019. Image vegetation index through a cycle generative adversarial network. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1014–1021. DOI 10.1109/CVPRW.2019.00133. SuárezP. SappaA. VintimillaB. HammoudR. 2019 Image vegetation index through a cycle generative adversarial network In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1014 1021 10.1109/CVPRW.2019.00133 Open DOISearch in Google Scholar

Sultana S., Ali A., Ahmad A., Mubeen M., Zia-Ul-Haq M., Ahmad S., Ercisli S., Jaafar H., 2014. Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. The Scientific World Journal 2014: e725326. DOI 10.1155/2014/725326. SultanaS. AliA. AhmadA. MubeenM. Zia-Ul-HaqM. AhmadS. ErcisliS. JaafarH. 2014 Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan The Scientific World Journal 2014 e725326 10.1155/2014/725326 Open DOISearch in Google Scholar

TensorFlow., (2018). 2022. TensorFlow documentation. Jupyter notebook. Tensorflow. Online: https://github.com/tensorflow/docs/blob/d58904052034c0870678709dc1ee8eb35e2fd34c/site/en/tutorials/generative/pix2pix.ipynb. TensorFlow 2018 2022. TensorFlow documentation. Jupyter notebook Tensorflow Online: https://github.com/tensorflow/docs/blob/d58904052034c0870678709dc1ee8eb35e2fd34c/site/en/tutorials/generative/pix2pix.ipynb. Search in Google Scholar

TensorFlow Datasets., b.d. Online: https://www.tensorflow.org/datasets (accessed 27 January 2022) TensorFlow Datasets b.d. Online: https://www.tensorflow.org/datasets (accessed 27 January 2022) Search in Google Scholar

Tomaszewska M., Lewiński S., Woźniak E., 2011. Use of MODIS satellite images to study the percentage of vegetation cover. Teledetekcja Środowiska 46: 15–22. TomaszewskaM. LewińskiS. WoźniakE. 2011 Use of MODIS satellite images to study the percentage of vegetation cover Teledetekcja Środowiska 46 15 22 Search in Google Scholar

Tucker C., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2): 127–150. DOI 10.1016/0034-4257(79)90013-0. TuckerC. 1979 Red and photographic infrared linear combinations for monitoring vegetation Remote Sensing of Environment 8 2 127 150 10.1016/0034-4257(79)90013-0 Open DOISearch in Google Scholar

Turlej K., 2009. Comparison of NDVI index based on NOAA AVHRR, SPOT-VEGETATION and TERRA MODIS satellite data. Teledetekcja Środowiska 42: 83–88. TurlejK. 2009 Comparison of NDVI index based on NOAA AVHRR, SPOT-VEGETATION and TERRA MODIS satellite data Teledetekcja Środowiska 42 83 88 Search in Google Scholar

Tuszynska J., Gatkowska M., Wrobel K., Jagiello K., 2018. A pilot study on determining approximate date of crop harvest on the basis of sentinel-2 satellite imagery. Geoinformation Issues 10(1): 65–77. Online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-46991614-3b5b-429e-892e-b1a2556684c5. TuszynskaJ. GatkowskaM. WrobelK. JagielloK. 2018 A pilot study on determining approximate date of crop harvest on the basis of sentinel-2 satellite imagery Geoinformation Issues 10 1 65 77 Online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-46991614-3b5b-429e-892e-b1a2556684c5. Search in Google Scholar

van der Walt S., Schönberger JL., Nunez-Iglesias J., Boulogne F., Warner JD., Yager N., Gouillart E., Yu T., 2014. Scikit-image: Image processing in Python. PeerJ 2: e453. DOI 10.7717/peerj.453. van der WaltS. SchönbergerJL. Nunez-IglesiasJ. BoulogneF. WarnerJD. YagerN. GouillartE. YuT. 2014 Scikit-image: Image processing in Python PeerJ 2 e453 10.7717/peerj.453 Open DOISearch in Google Scholar

Verykokou S., Ioannidis C., 2019. A Global Photogrammetry-Based Structure from Motion Framework: Application in Oblique Aerial Images. Conference paper: FIG Working Week 2019: Geospatial information for a smarter life and environmental resilience. Hanoi, Vietnam VerykokouS. IoannidisC. 2019 A Global Photogrammetry-Based Structure from Motion Framework: Application in Oblique Aerial Images Conference paper: FIG Working Week 2019: Geospatial information for a smarter life and environmental resilience Hanoi, Vietnam Search in Google Scholar

Wang Z., Bovik A., Sheikh H., Simoncelli E., 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4): 600–612. DOI 10.1109/TIP.2003.819861. WangZ. BovikA. SheikhH. SimoncelliE. 2004 Image quality assessment: From error visibility to structural similarity IEEE Transactions on Image Processing 13 4 600 612 10.1109/TIP.2003.819861 Open DOISearch in Google Scholar

Worm A., Będkowski K., Bielecki A., 2019. The use of surface and volume indicators from high resolution remote sensing data to assess the vegetation filling of urban quarters in Łódź City Centre, Poland. Teledetekcja Środowiska T. 60. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-4a024b76-0072-48be-94a6-ceea9e001322. WormA. BędkowskiK. BieleckiA. 2019 The use of surface and volume indicators from high resolution remote sensing data to assess the vegetation filling of urban quarters in Łódź City Centre, Poland Teledetekcja Środowiska T. 60. Online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-4a024b76-0072-48be-94a6-ceea9e001322. Search in Google Scholar

Yao G., Yilmaz A., Zhang L., Meng F., Ai H., Jin F., 2021. Matching large baseline oblique stereo images using an end-to-end convolutional neural network. Remote Sensing 13(2): 274. DOI 10.3390/rs13020274. YaoG. YilmazA. ZhangL. MengF. AiH. JinF. 2021 Matching large baseline oblique stereo images using an end-to-end convolutional neural network Remote Sensing 13 2 274 10.3390/rs13020274 Open DOISearch in Google Scholar

Zhang Y., 2001. Texture-integrated classification of urban treed areas in high-resolution color-infrared imagery. Photogrammetric Engineering & Remote Sensing 67(12): 1359–1365. ZhangY. 2001 Texture-integrated classification of urban treed areas in high-resolution color-infrared imagery Photogrammetric Engineering & Remote Sensing 67 12 1359 1365 Search in Google Scholar

Zhou S., Gordon M., Krishna R., Narcomey A., Fei-Fei L., Bernstein M., 2019. HYPE: a benchmark for human eYe perceptual evaluation of generative models. arXiv:1904.01121 [cs]. Online: http://arxiv.org/abs/1904.01121. ZhouS. GordonM. KrishnaR. NarcomeyA. Fei-FeiL. BernsteinM. 2019 HYPE: a benchmark for human eYe perceptual evaluation of generative models arXiv:1904.01121 [cs]. Online: http://arxiv.org/abs/1904.01121. Search in Google Scholar

Zięba-Kulawik K., Hawryło P., Wężyk P., Matczak P., Przewoźna P., Inglot A., Mączka K., 2021. Improving methods to calculate the loss of ecosystem services provided by urban trees using LiDAR and aerial orthophotos. Urban Forestry & Urban Greening 63(sierpień): 127195. DOI 10.1016/j.ufug.2021.127195. Zięba-KulawikK. HawryłoP. WężykP. MatczakP. PrzewoźnaP. InglotA. MączkaK. 2021 Improving methods to calculate the loss of ecosystem services provided by urban trees using LiDAR and aerial orthophotos Urban Forestry & Urban Greening 63 sierpień 127195 10.1016/j.ufug.2021.127195 Open DOISearch in Google Scholar

Zięba-Kulawik K., Wężyk P., 2022. Monitoring 3D changes in urban forests using landscape metrics analyses based on multi-temporal remote sensing data. Land 11(6): 883. DOI 10.3390/land11060883. Zięba-KulawikK. WężykP. 2022 Monitoring 3D changes in urban forests using landscape metrics analyses based on multi-temporal remote sensing data Land 11 6 883 10.3390/land11060883 Open DOISearch in Google Scholar

eISSN:
2081-6383
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Geosciences, Geography