[Ahmadi A., Chitsazan M., Mirzaee S.Y. & Nadri A., 2023. The effects of influence radius and drawdown cone on the areas related to the protection of water wells. Journal of Hydrology 617. https://doi.org/10.1016/j.jhydrol.2022.129001.]Search in Google Scholar
[Anderson M., Woessner W. & Hunt R., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic Press, London, 564 p.]Search in Google Scholar
[Bjerre E., Kristensen L.S., Engesgaard P. & Hojberg A.L., 2020. Drivers and barriers for taking account of geological uncertainty in decision making for ground-water protection. Science of the Total Environment 746. https://doi.org/10.1016/j.scitotenv.2020.141045.]Search in Google Scholar
[Brenčič M., Prestor J., Kompare B., Matoz H. & Kranjc S., 2009. Integrated approach to delineation of drinking water protection zones. Geologija 52, 175–182, https://doi.org/10.5474/geologija.2009.017.]Search in Google Scholar
[Chave P., Howard G., Schijven J., Appleyard S., Fladerer F. & Schimon W., 2006. Groundwater protection zones. [In] O. Schmol, G. Howard, J. Chilton & I. Chorus (Eds): Protecting Groundwater for Health. Managing the quality of Drinking-water sources. WHO, London, 465–492.]Search in Google Scholar
[Corson-Dosch N., Fienen M., Finkelstein J., Leaf A., White J., Woda J. & Williams J., 2022. Areas contributing re-charge to priority wells in valley-fill aquifers in the Neversink River and Rondout Creek Drainage Basins. USGS Scientific Investigations Report, New York https://doi.org/10.3133/sir20215112]Search in Google Scholar
[Dąbrowski S., Janiszewska B., Rynarzewski W. & Straburzyńska-Janiszewska R., 2018. Odwzorowanie przepływu wód podziemnych systemu wodonośnego odcinka Kościan–Wolsztyn pradoliny Warszawsko-Berlińskiej na modelach lokalnym i regionalnym [Reconstruction of groundwater flow in the water-bearing system of the Warsaw-Berlin ice-marginal valley in the Koscian–Wolsztyn area based on local and regional models]. Biuletyn Państwowego Instytutu Geologicznego 471, 15–22, https://doi.org/10.5604/01.3001.0012.4736.]Search in Google Scholar
[Dąbrowski S., Janiszewska B., Pawlak A. & Rynarzewski W., 2005. Jakość wód podziemnych jako czynnik warunkujący zasoby dyspozycyjne Pradoliny Warszawsko-Berlińskiej w obszarze zlewni kanałów Obry: Północnego, Środkowego i Południowego [The groundwater quality as the main condition factor safe yield of the Warsaw-Berlin Margin valley in the area of the sasin of the Obra’s channels: Northern, Central and South]. Współczesne Problemy Hydrogeologii 12, 155–163, Toruń.]Search in Google Scholar
[Desens A. & Houben G.J., 2022. Jenseits von Sichardt – empirische Formeln zur Bestimmung der Absenkreichweite eines Brunnens und ein Verbesserungsvorschlag. Grundwasser – Zeitschrift der Fachsektion Hydrogeologie 27, 131–141, https://doi.org/10.1007/s00767-021-00500-3.]Search in Google Scholar
[Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.]Search in Google Scholar
[Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.]Search in Google Scholar
[Doveri M., Menichini M. & Scozzari A., 2015. Protection of groundwater resources: Worldwide regulations and scientific approaches [In]: A. Scozzari & E. Dotsika (Eds): Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry 40. Springer, Berlin, https://doi.org/10.1007/698_2015_421.]Search in Google Scholar
[Friesz P., Williams J., Finkelstein J. & Woda J., 2022. Areas contributing recharge to selected production wells in un-confined and confined glacial valley-fill aquifers in Chenango River Basin. USGS Scientific Investigations Report, New York, https://doi.org/10.3133/sir20215083.]Search in Google Scholar
[Geological and Mining Law. Act of 9 June 2011. Journal of Laws. 2024 item 1290.]Search in Google Scholar
[Goodarzi M. & Eslamian S., 2019. Evaluation of WhAEM and MODFLOW models to determine the protection zone of drinking wells. Environmental Earth Science 78, 195. https://doi.org/10.1007/s12665-019-8204-5.]Search in Google Scholar
[Górski J., 2001. Propozycja oceny antropogenicznego zanieczyszczenia wód podziemnych na podstawie wybranych wskaźników hydrochemicznych [Proposal of anthropogenic contamination evaluation of ground water on the base of chosen hydrochemical indicators], Współczesne Problemy Hydrogeologii 10, 309–313, Wrocław.]Search in Google Scholar
[Górski J., 2010a. Uzdatnianie wód podziemnych w warstwie wodonośnej [Groundwater treatment in the aquifer]. [In:] J. Nawrocki (Ed.): Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań & Wydawnictwo Naukowe PWN, Warszawa, 316–357.]Search in Google Scholar
[Górski J., 2010b. Groundwater quality changes due to iron sulphide oxidation in the Odra ice marginal valley – long term process observations. Biuletyn Państwowego Instytutu Geologicznego 441, 19–26.]Search in Google Scholar
[Górski J., 2010c. Zmiany jakości wód podziemnych w warunkach eksploatacji [Groundwater quality changes during exploitation]. [In:] J.F. Lemański & S. Zabawa (Eds): Zaopatrzenie w wodę, jakość i ochrona wód [Water supply and water quality]. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, pp. 115–128.]Search in Google Scholar
[Górski J., 2017. Dwadzieścia pięć lat doświadczeń w uzdatnianiu wód podziemnych w warstwie wodonośnej na ujęciu Wroniawy dla miasta Wolsztyna [Twenty-five years of experience in groundwater treatment in the aquifer on the Wroniawy water capture for Wolsztyn town]. Przegląd Geologiczny 65, 1257–1263.]Search in Google Scholar
[Górski J., Kruć-Fijałkowska R., Matusiak M. & Dragon K., 2021. Zmiany chemizmu i jakości wód gruntowego poziomu wodonośnego w warunkach wieloletniej eksploatacji ujęcia wody w Chorzeminie [Changes in chemistry and water quality of the groundwater aquifer under conditions of long-term operation of the Chorzemin water intake]. [In:] D. Wrzesiński, R. Graf & A. Perz (Eds): Naturalne i antropogeniczne zmiany obiegu wody. Ilościowe i jakościowe badania wód [Natural and anthropogenic changes in the water cycle. Water quantitative and qualitative studies]. Studia i prace z geografii, Poznań 88, 29–39.]Search in Google Scholar
[Graf R. & Przybyłek J., 2018. Application of the WetSpass simulation model for determining conditions governing the recharge of shallow groundwater in the Poznan Upland, Poland. Geologos 2, 189–205, https://doi.org/10.2478/logos-2018-0020.]Search in Google Scholar
[Gurwin J., 2015. Integration of numerical models with geoinformatic techniques in delimitation of protection zone of complex multi-aquifer system of MGB 319, SW Poland. Geologos 21, 169–177, https://doi:10.1515/logos–2015-0014.]Search in Google Scholar
[Liu Y., Weisbrod N. & Yakirevich A., 2019. Comparative study of methods for delineating the wellhead protection area in an unconfined coastal aquifer. Water 11, 1168, https://doi.org/10.3390/w11061168.]Search in Google Scholar
[Louwyck A., Vandenbohede A., Libbrecht D., Van Camp M. & Walraevens K., 2022. The radius of influence myth. Water 14, https://doi.org/10.3390/w14020149]Search in Google Scholar
[Matusiak M. & Przybyłek J., 2017. Wykorzystanie niestacjonarnego modelu przepływu do oceny rzeczywistej wielkości eksploatacji wód podziemnych z piętra jurajsko-kredowego na obszarze intensywnych nawodnień rolniczych w rejonie Kalisza. [The usefulness of transient modeling method in quantification of actual groundwater abstraction out of Jurassic-Cretaceous aquifer within intensive irrigated areas near Kalisz]. Przegląd Geologiczny 65, 1218–1224.]Search in Google Scholar
[Matusiak M., Dragon K., Gorski J., Kruc-Fijałkowska R. & Przybylek J., 2021. Surface water and groundwater interaction at long-term exploited river bank filtration site based on groundwater flow modelling (Mosina–Krajkowo, Poland). Journal of Hydrology: Regional Studies 37, 100882, https://doi.org/10.1016/j.ejrh.2021.100882.]Search in Google Scholar
[McDonald M.G. & Harbaugh A.W., 1988. A modular three-dimensional finite-difference groundwater flow model. USGS Techniques of Water Resources Investigations 06-A1, Washington, https://doi.org/10.3133/twri06A1.]Search in Google Scholar
[Moutsopoulos K., Gemitzi A. & Tsihrintzis V., 2008. Delineation of groundwater protection zones by the backward particle tracking method: theoretical background and GIS-based stochastic analysis. Environmental Geology 54, 1081–1090, https://doi.org/10.1007/s00254-007-0879-3.]Search in Google Scholar
[Osmanaj L., Hajra A. & Berisha A., 2021. Determination of groundwater protection zones of the Pozharan wellfield using hydrogeological Modflow Model. Journal of Ecological Engineering 22, 73–81, https://doi.org/10.12911/22998993/132429.]Search in Google Scholar
[Ozdemir A., 2021. A framework for drinking water basin protection. Water and Environment Journal 35, 1362–1375, https://doi.org/10.1111/wej.12735.]Search in Google Scholar
[Paris M., D’elıa M., Perez M. & Pacini J., 2019. Wellhead protection zones for sustainable groundwater supply. Sustainable Water Resources Management 5, 161–174. https://doi.org/10.1007/s40899-017-0156-x.]Search in Google Scholar
[Pollock D.W., 1989. Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite-difference groundwater flow model. US Geological Survey, Reston, https://doi.org/10.3133/ofr89381.]Search in Google Scholar
[Pollock D.W., 2016. User Guide for MODPATH Version 7—A Particle-Tracking Model for MODFLOW. US Geological Survey, Reston, https://doi.org/10.3133/ofr20161086.]Search in Google Scholar
[Steiakakis E., Vavadakis D. & Mourkakou O., 2023. Groundwater vulnerability and delineation of protection zones in the discharge area of a karstic aquifer-application in Agyia’s karst system (Crete, Greece). Water 15, https://doi.org/10.3390/w15020231.]Search in Google Scholar
[Urumovic K., 2016. The referential grain size and effective porosity in the Kozeny-Carman model. Hydrology and Earth System Sciences 20, 1669–1680. https://doi.org/10.5194/hess-20-1669-2016.]Search in Google Scholar
[Water Law. Act of 20 July 2017. Journal of Laws. 2021 item 624.]Search in Google Scholar
[Witczak S. & Żurek A., 1994. Wykorzystanie map glebowo--rolniczych w ocenie ochronnej roli gleb dla wód podziemnych [The use of soil-agricultural maps in evaluating the protective role of soils for groundwater]. [In:] A.S. Kleczkowski (Ed.): Metodyczne podstawy ochrony wód podziemnych [Methodical Basement of the Groundwater Protection]. Wydawnictwo AGH, Kraków, 155–180.]Search in Google Scholar
[Wyssling L., 1979. Eine neue Formel zur Berechnung der Zustromdauer (Laufzeit) des Grundwassers zu einem Grundwasser Pumpwerk. Eclogae Geologicae Helvetiae 72, 401–406.]Search in Google Scholar
[Zeferino J., Paiva M., Carvalho M.R., Carvalho J.M. & Almeid C., 2022. Long term effectiveness of well-head protection areas. Water 14, 1063, https://doi.org/10.3390/w14071063.]Search in Google Scholar
[Zhou Y., Hossain P. & van der Moot N., 2015. Analysis of travel time, sources of water and well protection zones with groundwater models. Journal of Groundwater Science and Engineering 3, 363–374.]Search in Google Scholar
[ŽivanovićV., Jemcov I. & Dragišić V., 2016. Karst ground-water source protection based on the time-dependent vulnerability assessment model: Crnica springs case study, Eastern Serbia. Environmental Earth Sciences 75, 1224, https://doi.org/10.1007/s12665-016-6018-2.]Search in Google Scholar
[Živanović V., Atanacković N. & Stojadinović S., 2021. Vulnerability assessment as a basis for Sanitary Zone Delineation of Karst Groundwater Sources – Bled-erija Spring case study. Water 13, 2775, https://doi.org/10.3390/w13192775.]Search in Google Scholar