[Aitchison J.C., Ali J.R. & Davis A.M., 2007. When and where did India and Asia collide? Journal of Geophysical Research 112, B05423.]Search in Google Scholar
[ASTM International, 2008. Standard test method for particle-size analysis of soils (ASTM D 422-63). [In:] Annual book of ASTM standards (vol. 04.08, pp. 10–17). West Conshohocken, USA.]Search in Google Scholar
[Baiyegunhi C., Liu K. & Gwavava O., 2017. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosciences 9, 554–576.]Search in Google Scholar
[Bennett R.H., Bryant W.R., Hulbert M.H., Chiou W.A., Faas R.W., Kasprowicz J., Li H., Lomenick T., O’Brien N.R., Pamukcu S., Smart P., Weaver C.E. & Yamamoto T., 1991. Microstructure of Fine-Grained Sediments. Springer-Verlag, New York, 572 pp.]Search in Google Scholar
[Blott S.J. & Pye K., 2001. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Land-forms 26, 1237–1248.]Search in Google Scholar
[Brindley G.W. & Brown G., 1980. Crystal structures of clay minerals and their X-ray Identification. Mineralogical Society of Great Britain and Ireland, London, 495 pp.]Search in Google Scholar
[Buffetaut E., Suteethorn V., Loeuff J.L., Khansubha S., Tong H. & Wongko K., 2005. The Dinosaur fauna from the Khok Kruat Formation (Early Cretaceous) of Thailand. International Conference on Geology, Geotechnology and Mineral Resources of Indochina, Khon Kaen, Thailand, 575–581.]Search in Google Scholar
[Burri P., 1989. Hydrocarbon potential of Tertiary intermontane basins in Thailand. [In:] T. Thanasuthipitak & P. Ounchanum (Eds): International symposium on intermontane basins: Geology & resources, Chiang Mai, Thailand, 3–12.]Search in Google Scholar
[Carroll D., 1970. Clay Minerals: A Guide to Their X-ray Identification. The Geological Society of America, California, 80 pp.]Search in Google Scholar
[Chamley H., 1989. Clay Sedimentology. Springer-Verlag, Berlin Heidelberg, 623 pp.]Search in Google Scholar
[Chaodumrong P. & Songtham W., 2014. Tectonic evolution and paleogeographic history. [In:] Geology of Thailand. Ministry of Natural Resources and Environment, Bangkok, Thailand, 263–287.]Search in Google Scholar
[Chaudhri A.R. & Singh M., 2012. Clay minerals as climate change indicators – A case study. American Journal of Climate Change 1, 231–239.]Search in Google Scholar
[Chomiak L., Urbański P. & Widera M., 2020. Architektura i geneza iłów w górnym poziomie węgli brunatnych formacji poznańskiej (środkowy miocen) – odkrywka Tomisławice koło Konina w środkowej Polsce [Architecture and origin of clays within the upper part of lignites of the Poznań Formation (Middle Miocene) – the Tomisławice lignite opencast mine near Konin, central Poland]. Przegląd Geologiczny 68, 526–534.]Search in Google Scholar
[Clift P.D., Carter A., Campbell I.H., Lap N.V., Allen C.M. & Tan M.T., 2006. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry Geophysics Geosystems 7, 1–28.]Search in Google Scholar
[Deepthy R. & Balakrishnan S., 2005. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science 114, 545–556.]Search in Google Scholar
[Department of Mineral Resources, 2007. Geological map of Nan Province. Department of Mineral Resources, Bangkok (in Thai).]Search in Google Scholar
[Dianto A., Subehi L., Ridwansyah I. & Hantoro W.S., 2019. Clay minerals in the sediments as useful paleo-climate proxy: Lake Sentarum case study, West Kali-mantan, Indonesia. IOP Conference Series: Earth and Environmental Science 311, 012036.]Search in Google Scholar
[Dziamara M., Kaczmarek P., Klęsk J., Wachocki R. & Widera M., 2023. Facies and statistical analyses of a crevasse-splay complex at the Tomisławice opencast lignite mine in central Poland. Geologos 29, 173–181.]Search in Google Scholar
[Eisma D., 1986. Flocculation and deflocculation of suspended matter in estuaries. Netherlands Journal of Sea Research 20, 183–199.]Search in Google Scholar
[Fagel N., Boski T., Likhoshway L. & Oberhaensli H., 2003. Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 193, 159–179.]Search in Google Scholar
[Fedorov P. & Koloskov A.V., 2005. Cenozoic Volcanism of Southeast Asia. Petrology 13, 352–380.]Search in Google Scholar
[Folk R.L., 1980. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, 182 pp.]Search in Google Scholar
[Folk R.L. & Ward W.C., 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research 27, 3–26.]Search in Google Scholar
[Foster M.D., 1954. The relation between composition and swelling in clays. Clays and Clay minerals 3, 205–220.]Search in Google Scholar
[Friederich M.C., Moore T.A. & Flores R.M., 2016. A regional review and new insights into SE Asia Cenozoic coal-bearing sediments: Why does Indochina have such extensive coal deposits? International Journal of Coal Geology 166, 2–35.]Search in Google Scholar
[Hall R. & Morley C.K., 2004. Sundaland basins. [In]: P. Clift, W. Kuhnt & D.E. Hayes (Eds): Continent-ocean Interactions Within the East Asian Marginal Seas. American Geophysical Union, Washington DC, 55–85.]Search in Google Scholar
[Harnpa T. & Saenton S., 2017. Stability analysis of Hongsa Coal Mine’s pit walls, Xaignabouli Province, Laos PDR. The National and International Graduate Research Conference, Khon Kaen, Thailand, 89–95.]Search in Google Scholar
[He L., Qiu J., Hu Q., Wang H., Feng S., Gu Y. & Zeng J., 2022. Micro-mechanism of shear strength and water stability enhancement of montmorillonite by microwave heating. Materials Research 25, e20210260.]Search in Google Scholar
[Hillier S., 1995. Erosion, sedimentation and sedimentary origin of clays. [In:] B. Velde (Ed.): Origin and mineralogy of clays: Clays and the environment. Springer-Verlag, Berlin, 162–219.]Search in Google Scholar
[Hofmann L., Blunck S., Dittrich W., Kraemer T., von Schwarzenberg T. & Wall G., 2008. Mine master plan for the Hongsa Mine Mouth Power Project, Lao P.D.R.: Final Report. RWE Power International, Koeln.]Search in Google Scholar
[Hongsa Power, 2024. Hongsa Power Company Limited (HPC). Available at https://www.hongsapower.com/index.php?model=cms&view=item&layout=page&id=1]Search in Google Scholar
[Jackson M.L., 2018. Soil chemical analysis: Advanced course (2nd ed.). University of Wisconsin, Madison, 930 pp.]Search in Google Scholar
[Jain A.K., 2014. When did India-Asia collide and make the Himalya? Current Science 106, 2–25.]Search in Google Scholar
[Kordowski J., 2003. Struktury wewnętrzne i uziarnienie osadów pozakorytowych doliny dolnej Wisły w Kotlinie Toruńskiej i Basenie Unisławskim [Structures and granulometry of overbank deposits of the lower Vistula River valley in the Toruń and Unisław Basins]. Przegląd Geograficzny 75, 601–621.]Search in Google Scholar
[Kumar P.A. & Patterson J., 2008. Granulometric study of Tharuvaikulam and Thirespuram, Gulf of Mannar, southeast coast of India. Journal of the Marine Biological Association of India 50, 127–133.]Search in Google Scholar
[Lacassin R., Maluski H., Leloup P.H., Tapponnier P., Hin-thong C., Siribhakdi K., Chuaviroj S. & Charoenravat A., 1997. Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand. Journal of Geophysical Research 102 (B5), 10013–10037.]Search in Google Scholar
[Li X., Gu H., Huang A. & Fu L., 2021. Bonding mechanism and performance of rectorite/ball clay bonded unfired high alumina bricks. Ceramics International 47, 10749–10763.]Search in Google Scholar
[Manitkoon S., Deesri U., Lauprasert K., Warapeang P., Nonsrirach T., Nilpanapan A., Wongko K. & Chanthasit P., 2022. Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian). Fossil Record 25, 83–98.]Search in Google Scholar
[Metcalfe I., 2017. Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia 63, 27–60.]Search in Google Scholar
[Meunier A., 2005. Clays. Spinger, Berlin, 472 pp.]Search in Google Scholar
[Mitchell J. K. & Soga K., 2005. Fundamentals of soil behavior (3rd ed.). John Wiley & Sons, Hoboken, 592 pp.]Search in Google Scholar
[Moore D.M. & Reynolds R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals (2nd ed.). Oxford University Press, Oxford, 400 pp.]Search in Google Scholar
[Morley C.K. & Racey A., 2011. Tertiary stratigraphy. [In:] M.F. Ridd, A.J. Barber & M.J. Crow (Eds): The geology of Thailand. The Geological Society of London, London, 223–271.]Search in Google Scholar
[Mycielska-Dowgiałło E. & Ludwikowska-Kędzia M., 2011. Alternative interpretations of grain-size data from Quaternary deposits. Geologos 17, 189–203.]Search in Google Scholar
[NASA/METI/AIST/Japan Spacesystems & U.S./Japan ASTER Science Team., 2018. ASTGTM v003 ASTER Global Digital Elevation Model 1 arc second. Available at https://doi.org/10.5067/ASTER/ASTGTM.003]Search in Google Scholar
[Phouthonesy P., 2021. The Lao PDR Country Report. [In:] P. Han & S. Kimura (Eds): Energy Outlook and Energy Saving Potential in East Asia 2020. ERIA, Jakarta, 213–238.]Search in Google Scholar
[Phusuwan S., Xayalath S. & Pongpa-ngan L., 2015. Challenging Hongsa resettlement and livelihoods: The first mine-mouth power plant project in Lao PDR. Proceeding of 35th Annual Conference of the International Association for Impact Assessment, Florence, Italy, 1–5.]Search in Google Scholar
[Piman T. & Manish S., 2017. Case study on sediment in the Mekong River basin: Current state and future trends. Project Report 2017-03. Stockholm Environment Institute, Stockholm, 45 pp.]Search in Google Scholar
[Racey A., Love M.A., Canham A.C., Goodall J.G.S., Polachan S. & Jones P.D., 1996. Stratigraphy and reservoir potential of the Mesozoic Khorat Group, NE Thailand. Part 1: Stratigraphy and sedimentary evolution. Journal of Petroleum Geology 19, 5–40.]Search in Google Scholar
[Ratanasthien B., 1975. The geochemistry of some recent argillaceous sediment. The University of Aston in Birmingham, 348 pp.]Search in Google Scholar
[Rattana P., 2020. Stratigraphy and geochemistry of rock salt from Maha Sarakham formation in Changwat Chaiyaphum, northeastern Thailand. Chulalongkorn University Theses and Dissertations, Bangkok, 356 pp.]Search in Google Scholar
[Rebesco M., Hernández-Molina F.J., Rooij D.V. & Wåhlin A., 2014. Contourites and associated sediments controlled by deep-water circulation processes: State-ofthe-art and future considerations. Marine Geology 352, 111–154.]Search in Google Scholar
[Salyapongse S., Fontaine H. & Sashida K., 2000. Petrologic and paleontologic constraints on age of rock associations – pyroclastics, volcaniclastics and limestones in Nan, Phayao and Prae Provinces (research report). Department of Mineral Resources. Bangkok, Thailand, 137–170.]Search in Google Scholar
[Sattraburut T., Ratanasthien B. & Thasod S., 2021a. Palaeovegetation and palaeoclimate of Tertiary sediments from Hongsa Coalfield, Xayabouly Province, Lao PDR – Implication from palynofloras. Songklanakarin Journal of Science and Technology 43, 648–659.]Search in Google Scholar
[Sattraburut T., Thasod Y., Ratanasthien B. & Kandharosa W., 2021b. Petrographic and chemical characterizations of coals from Hongsa coal mine, Xayabouly Province, Lao PDR. Suranaree Journal of Science and Technology 28, 030037.]Search in Google Scholar
[Sattraburut T., Ratanasthien R. & Thasod Y., 2023. Fungal spores from Neogene sediments of the Hongsa Basin, Lao PDR. Tropical Natural History 23, 82–96.]Search in Google Scholar
[Sattraburut T., Thasod Y. & Ratanasthien B., 2017. Maceral association in coal-bearing formations of Hongsa coal deposits, Northwestern Lao PDR. The 6th International Graduate Research Conference, Chiang Mai, Thailand.]Search in Google Scholar
[Schneider W. & Göthel M., 2001. Geology and petrography of Young Tertiary lignite seams in the Hongsa Basin (Laos, Indochina). Geologica Saxonica 46/47, 149–167.]Search in Google Scholar
[Shen L. & Siritongkham N., 2020. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geology 3, 67–82.]Search in Google Scholar
[Shrestha B., Maskey S., Babel M.S., van Griensven A. & Uhlenbrook S., 2018. Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR. Climatic Change 149, 13–27.]Search in Google Scholar
[Tapponier P., Peltzer G. & Armijo R., 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications 19, 113–157.]Search in Google Scholar
[Teichmüller M., 1958. Rekonstruktion verschiedener Moortypen des Hauptflözes der Niederrheinischen Braunkohle [Reconstruction of various peat types of the main seam of the Lower Rhine lignite]. Fortschritte in der Geologie von Rheinland und Westfalen 2, 599–612.]Search in Google Scholar
[Teichmüller M., 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology 12, 1–87.]Search in Google Scholar
[Thasod Y., Ratanasthien B., Tanaka S., Saegusa H. & Nakaya H., 2007. Fine-fraction clays from Chiang Muan Mine, Phayao Province, Northern Thailand. Science Asia 33, 13–21.]Search in Google Scholar
[van Olphen H., 1977. An introduction to clay colloid chemistry: For clay technologists, geologists, and soil scientists (2nd ed.). John Wiley, New York, 318 pp.]Search in Google Scholar
[Vilaihongs M. & Areesiri S., 1997. Geology of lignite deposit and tectonic evolutions in Hongsa Tertiary basin, Khwaeng Xayabouly northern Lao PDR. [In:] Dheeradilok P., Hinthong C., Chaodumrong P., Putthapiban P., Tanasathien W., Utha-aroon C., Sattayarak N., Nuchanong T., Techawan S. (Ed): Proceeding of the International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific, Bangkok, Thailand.]Search in Google Scholar
[Virk H.S., 2015. Nanomaterials: Basic concepts and applications. Trans Tech Publications Ltd., Bäch, Switzerland, 212 pp.]Search in Google Scholar
[Visher G.S., 1969. Grain size distributions and depositional processes. Journal of Sedimentary Petrology 39, 1074–1106.]Search in Google Scholar
[Wang R., Zhang G. & Zhang J-M., 2010. Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions. Applied Clay Science 50, 386–394.]Search in Google Scholar
[Welton J.E., 2003. SEM petrology atlas – Methods in exploration series No. 4. The American Association of Petroleum Geologists. Oklahoma, USA.]Search in Google Scholar
[Widera M., 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos 18, 1–11.]Search in Google Scholar
[Widera M., 2016. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: New evidence from Middle Miocene deposits of central Poland. Sedimentary Geology 335, 150–165.]Search in Google Scholar
[Widera M., Chomiak L. & Wachocki R., 2023. Distinct types of crevasse splays formed in the area of Middle Miocene mires, central Poland: Insights from geological mapping and facies analysis. Sedimentary Geology 443, 106300.]Search in Google Scholar
[Widera M., Dziamara M., Klęsk J. & Wachocki R., 2024. Four in one: a new crevasse-splay complex in the middle Miocene of central Poland. Annales Societatis Geologorum Poloniae 94, 1–18.]Search in Google Scholar
[Zhu H., Li S., Hu Z., Ju Y., Pan Y., Yang M., Lu Y., Wei M. & Qian W., 2023. Microstructural observations of clay-hosted pores in black shales: implications for porosity preservation and petrophysical variability. Clay Minerals 58, 310–323.]Search in Google Scholar