Accesso libero

Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: An Evaluation

, , , , , , , ,  e   
12 set 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

World Health Organization, World report on hearing. Geneva: World Health Organization, 2021. Search in Google Scholar

R. W. Baloh and J. C. Jen, “Hearing and Equilibrium,” Jan. 2012, doi: 10.1016/b978-1-4377-1604-7.00436-x. Search in Google Scholar

M. Kassjański et al., “Detecting type of hearing loss with different AI classification methods: a performance review,” Computer Science and Information Systems (FedCSIS), 2019 Federated Conference, Sep. 2023, doi: 10.15439/2023f3083. Search in Google Scholar

C. Belitz, H. Ali, and J. Hansen, “A Machine Learning Based Clustering Protocol for Determining Hearing Aid Initial Configurations from Pure- Tone Audiograms,” PubMed Central, Sep. 2019, doi: 10.21437/interspeech.2019-3091. Search in Google Scholar

F. Charih, M. Bromwich, A. E. Mark, R. Lefrançois, and J. R. Green, “Data-Driven Audiogram Classification for Mobile Audiometry,” Scientific Reports, vol. 10, no. 1, Mar. 2020, doi: 10.1038/s41598-020-60898-3. Search in Google Scholar

A. Elkhouly et al., “Data-driven audiogram classi fier using data normalization and multi-stage feature selection,” Scientific Reports, vol. 13, no. 1, Feb. 2023, doi: 10.1038/s41598-022-25 411-y. Search in Google Scholar

E. Elbaşı and M. Obali, “Classification of Hearing Losses Determined through the Use of Audiometry Using Data Mining,” Conference: 9th International Conference on Electronics,Computer and Computation. Search in Google Scholar

M. G. Crowson et al., “AutoAudio: Deep Learning for Automatic Audiogram Interpretation,” Journal of Medical Systems, vol. 44, no. 9, Aug. 2020, doi: 10.1007/s10916-020-01627-1. Search in Google Scholar

H. Shojaeemend and H. Ayatollahi, “Automated Audiometry: A Review of the Implementation and Evaluation Methods,” Healthcare Informatics Research, vol. 24, no. 4, pp. 263–275, Oct. 2018, doi: 10.4258/hir.2018.24.4.263. Search in Google Scholar

Guidelines for Manual Pure-Tone Threshold Audiometry,” American Speech-Language- Hearing Association. https://www.asha.org/policy/GL2005-00014/ (accessed Dec. 5, 2023). Search in Google Scholar

M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv.org, 2014. https://arxiv.org/abs/1411.1784. Search in Google Scholar

Z. Zhao, A. Kunar, Van, R. Birke, and L. Y. Chen, “CTAB-GAN: Effective Table Data Synthesizing,” arXiv (Cornell University), Feb. 2021. Search in Google Scholar

L. Xu et al., “Modeling Tabular Data using Conditional GAN.” Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/254ed 7d2de3b23ab10936522dd547b78-Paper.pdf (accessed Dec 5, 2023). Search in Google Scholar

A. M. Annaswamy and Massoud Amin, IEEE Vision for Smart Grid Controls: 2030 and Beyond. Piscataway, Usa Ieee, 2013. Search in Google Scholar

M. Shanker, M. Y. Hu, and M. S. Hung, “Effect of data standardization on neural network training,” Omega, vol. 24, no. 4, pp. 385–397, Aug. 1996, doi: 10.1016/0305-0483(96)00010-2. Search in Google Scholar

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735. Search in Google Scholar

I. Banerjee et al., “Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification,” Artificial Intelligence in Medicine, vol. 97, pp. 79–88, Jun. 2019, doi: 10.1016/j.artmed.2018.11.004. Search in Google Scholar

“Recurrent Neural Networks in Medical Data Analysis and Classifications,” Applied Computing in Medicine and Health, pp. 147–165, Jan. 2016, doi: 10.1016/B978-0-12-803468-2.00007-2. Search in Google Scholar

C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognition Letters, vol. 30, no. 1, pp. 27–38, Jan. 2009, doi: 10.1016/j.patrec.2008.08.010. Search in Google Scholar

D. J. Hand and R. J. Till, “A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems,” Machine Learning, vol. 45, no. 2, pp. 171–186, 2001, doi: 10.1023/a:1010920819831. Search in Google Scholar

M. Kassjański, M. Kulawiak, and Tomasz Przewoźny, “Development of an AI-based audiogram classification method for patient referral,” Computer Science and Information Systems (FedCSIS), 2019 Federated Conference on, Sep. 2022, doi: 10.15439/2022f66. Search in Google Scholar

L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The choice of scaling technique matters for classification performance,” Applied Soft Computing, vol. 133, p. 109924, Jan. 2023, doi: 10.1016/j.asoc.2022.109924. Search in Google Scholar