Accesso libero

Implementation of Enzyme Family Classification by using Autoencoders in a Study Case with Imbalanced and Underrepresented Classes

, ,  e   
31 mar 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

N. Buton, F. Coste, and Y. Le Cunff, “Predicting Enzymatic Function of Protein Sequences With Attention,” Bioinformatics, vol. 39, no. 10, Oct. 2023, doi: 10.1093/bioinformatics/btad620. N. Buton F. Coste Y. Le Cunff Predicting Enzymatic Function of Protein Sequences With Attention ,” Bioinformatics , vol. 39 , no. 10 , Oct . 2023 , doi: 10.1093/bioinformatics/btad620 . Open DOISearch in Google Scholar

Y. González Valle, D. Galpert, and R. Molina-Ruiz, “Integración De Rasgos Y Aprendizaje SemiSupervisado Para La Clasificación Funcional De Enzimas Utilizando KMeans De Spark,” Revista Cubana de Ciencias Informáticas, vol. 14, no. 4, 2020. Y. González Valle D. Galpert R. Molina-Ruiz Integración De Rasgos Y Aprendizaje SemiSupervisado Para La Clasificación Funcional De Enzimas Utilizando K2010;Means De Spark ,” Revista Cubana de Ciencias Informáticas , vol. 14 , no. 4 , 2020 . Search in Google Scholar

Y. González Valle, D. Galpert, and R. MolinaRuiz, “Agrupamiento Funcional De Enzimas GH-70 Utilizando Aprendizaje Semi-Supervisado Y Apache Spark,” Revista Cubana de Transformación Digital, pp. 14–32, 2021. Y. González Valle D. Galpert R. Molina-Ruiz Agrupamiento Funcional De Enzimas GH-70 Utilizando Aprendizaje Semi-Supervisado Y Apache Spark ,” Revista Cubana de Transformación Digital , pp. 14 32 , 2021 . Search in Google Scholar

H. Chehili, S. E. Aliouane, A. Bendahmane, and M. A. Hamidechi, “DeepEnz: Prediction Of Enzyme Classification By Deep Learning,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 2, 2021, doi: 10.11591/ije ecs.v22.i2.pp1108-1115. H. Chehili S. E. Aliouane A. Bendahmane M. A. Hamidechi DeepEnz: Prediction Of Enzyme Classification By Deep Learning ,” Indonesian Journal of Electrical Engineering and Computer Science , vol. 22 , no. 2 , 2021 , doi: 10.11591/ije ecs.v22.i2.pp1108-1115 . Open DOISearch in Google Scholar

Z. Tao, B. Dong, Z. Teng, and Y. Zhao, “The Classification of Enzymes by Deep Learning,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.202 0.2992468. Z. Tao B. Dong Z. Teng Y. Zhao The Classification of Enzymes by Deep Learning ,” IEEE Access , vol. 8 , 2020 , doi: 10.1109/ACCESS.202 0.2992468 . Open DOISearch in Google Scholar

N. Ibtehaz and D. Kihara, “Application of Sequence Embedding in Protein Sequence-Based Predictions,” in Machine Learning in Bioinformatics of Protein Sequences: Algorithms, Databases and Resources for Modern Protein Bioinformatics, 2022. doi: 10.1142/9789811258589_0002. N. Ibtehaz D. Kihara Application of Sequence Embedding in Protein Sequence-Based Predictions ,” in Machine Learning in Bioinformatics of Protein Sequences: Algorithms, Databases and Resources for Modern Protein Bioinformatics , 2022 . doi: 10.1142/9789811258589_0002 . Open DOISearch in Google Scholar

K. K. Yang, Z. Wu, C. N. Bedbrook, and F. H. Arnold, “Learned Protein Embeddings For Machine Learning,” Bioinformatics, vol. 34, no. 15, pp. 2642–2648, Aug. 2018, doi: 10.1093/bi oinformatics/bty178. K. K. Yang Z. Wu C. N. Bedbrook F. H. Arnold Learned Protein Embeddings For Machine Learning ,” Bioinformatics , vol. 34 , no. 15 , pp. 2642 2648 , Aug . 2018 , doi: 10.1093/bi oinformatics/bty178 . Open DOISearch in Google Scholar

C. Marquet et al., “Embeddings From Protein Language Models Predict Conservation And Variant Effects,” Hum Genet, vol. 141, no. 10, 2022, doi: 10.1007/s00439-021-02411-y. C. Marquet Embeddings From Protein Language Models Predict Conservation And Variant Effects ,” Hum Genet , vol. 141 , no. 10 , 2022 , doi: 10.1007/s00439-021-02411-y . Open DOISearch in Google Scholar

M. M. Moya and D. R. Hush, “Network Constraints And Multi-Objective Optimization For One-Class Classification,” Neural Networks, vol. 9, no. 3, 1996, doi: 10.1016/0893-6080(95)00120-4. M. M. Moya D. R. Hush Network Constraints And Multi-Objective Optimization For One-Class Classification ,” Neural Networks , vol. 9 , no. 3 , 1996 , doi: 10.1016/0893-6080(95)00120-4 . Open DOISearch in Google Scholar

M. Sakurada and T. Yairi, “Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction,” in ACM International Conference Proceeding Series, 2014. doi: 10.1145/2689746.2689747. M. Sakurada T. Yairi Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction ,” in ACM International Conference Proceeding Series , 2014 . doi: 10.1145/2689746.2689747 . Open DOISearch in Google Scholar

K. Pawar and V. Attar, “Deep Learning Model Based on Cascaded Autoencoders and One-Class Learning For Detection And Localization Of Anomalies From Surveillance Videos,” IET Biom, vol. 11, no. 4, 2022, doi: 10.1049/bme2.12064. K. Pawar V. Attar Deep Learning Model Based on Cascaded Autoencoders and One-Class Learning For Detection And Localization Of Anomalies From Surveillance Videos ,” IET Biom , vol. 11 , no. 4 , 2022 , doi: 10.1049/bme2.12064 . Open DOISearch in Google Scholar

L. López, N. Acosta-Mendoza, and A. Gago-Alonso, “Detección De Anomalías Basada En Aprendizaje Profundo,” Revista de Ciencias Informáticas, vol. 13, no. 3, 2020. L. López N. Acosta-Mendoza A. Gago-Alonso Detección De Anomalías Basada En Aprendizaje Profundo ,” Revista de Ciencias Informáticas , vol. 13 , no. 3 , 2020 . Search in Google Scholar

M. V. Nallapareddy and R. Dwivedula, “ABLE: Attention Based Learning For Enzyme Classification,” Comput Biol Chem, vol. 94, p. 107558, 2021, doi: https://doi.org/10.1016/j.compbiolchem.2021.107558. M. V. Nallapareddy R. Dwivedula ABLE: Attention Based Learning For Enzyme Classification ,” Comput Biol Chem , vol. 94 , p. 107558 , 2021 , doi: https://doi.org/10.1016/j.compbiolchem.2021.107558 . Search in Google Scholar

R. Atienza, Advanced Deep Learning with Keras. 2018. R. Atienza Advanced Deep Learning with Keras . 2018 . Search in Google Scholar

L. Wang, H. Zhang, W. Xu, Z. Xue, and Y. Wang, “Deciphering The Protein Landscape With Protflash, A Lightweight Language Model,” Cell Rep PhysSci, vol. 4, no. 10, p. 101600, 2023, doi: https://doi.org/10.1016/j.xcrp.2023.101600. L. Wang H. Zhang W. Xu Z. Xue Y. Wang Deciphering The Protein Landscape With Protflash, A Lightweight Language Model ,” Cell Rep PhysSci ,vol. 4 , no. 10 , p. 101600 , 2023 , doi: https://doi.org/10.1016/j.xcrp.2023.101600 . Search in Google Scholar

K. Cabello-Solorzano, I. Ortigosa de Araujo, M. Peña, L. Correia, and A. J. Tallón-Ballesteros, “The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis,” 2023. doi: 10.1007/978-3-031-4253 6-3_33. K. Cabello-Solorzano I. Ortigosa de Araujo M. Peña L. Correia A. J. Tallón-Ballesteros The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis ,” 2023 . doi: 10.1007/978-3-031-4253 6-3_33 . Open DOISearch in Google Scholar

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-Sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, 2002, doi: 10.1613/jair.953. N. V. Chawla K. W. Bowyer L. O. Hall W. P. Kegelmeyer SMOTE: Synthetic Minority Over-Sampling Technique ,” Journal of Artificial Intelligence Research , vol. 16 , 2002 , doi: 10.1613/jair.953 . Open DOISearch in Google Scholar

G. Douzas, F. Bacao, and F. Last, “Improving Imbalanced Learning Through A Heuristic Oversampling Method Based On K-Means And SMOTE,” Inf Sci (N Y), vol. 465, 2018, doi: 10.1 016/j.ins.2018.06.056. G. Douzas F. Bacao F. Last Improving Imbalanced Learning Through A Heuristic Oversampling Method Based On K-Means And SMOTE ,” Inf Sci (N Y) , vol. 465 , 2018 , doi: 10.1 016/j.ins.2018.06.056 . Open DOISearch in Google Scholar

H. Han, W. Y. Wang, and B. H. Mao, “Borderline-SMOTE: A New Over-Sampling Method In Imbalanced Data Sets Learning,” in Lecture Notes in Computer Science, 2005. doi: 10.1007/115380 59_91. H. Han W. Y. Wang B. H. Mao Borderline-SMOTE: A New Over-Sampling Method In Imbalanced Data Sets Learning ,” in Lecture Notes in Computer Science , 2005 . doi: 10.1007/115380 59_91 . Open DOISearch in Google Scholar

Aurélien Géaron, Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, And Techniques to Build Intelligent Systems. 2022. Aurélien Géaron Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, And Techniques to Build Intelligent Systems . 2022 . Search in Google Scholar

D. P. Kingma and J. L. Ba, “Adam: A Method For Stochastic Optimization,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015. D. P. Kingma J. L. Ba Adam: A Method For Stochastic Optimization ,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings , 2015 . Search in Google Scholar

R. Dhanuka, A. Tripathi, and J. P. Singh, “A Semi-Supervised Autoencoder-Based Approach for Protein Function Prediction,” IEEE J Biomed Health Inform, vol. 26, no. 10, pp. 4957–4965, Oct. 2022, doi: 10.1109/JBHI.2022.3163150. R. Dhanuka A. Tripathi J. P. Singh A Semi-Supervised Autoencoder-Based Approach for Protein Function Prediction ,” IEEE J Biomed Health Inform , vol. 26 , no. 10 , pp. 4957 4965 , Oct . 2022 , doi: 10.1109/JBHI.2022.3163150 . Open DOISearch in Google Scholar

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way To Prevent Neural Networks From Overfitting,” Journal of Machine Learning Research, vol. 15, 2014. N. Srivastava G. Hinton A. Krizhevsky I. Sutskever R. Salakhutdinov Dropout: A Simple Way To Prevent Neural Networks From Overfitting ,” Journal of Machine Learning Research , vol. 15 , 2014 . Search in Google Scholar

T. Dozat, “Incorporating Nesterov Momentum into Adam,” ICLR Workshop, no. 1, 2016. T. Dozat Incorporating Nesterov Momentum into Adam ,” ICLR Workshop , no. 1 , 2016 . Search in Google Scholar

H. Bin Shen and K. C. Chou, “EzyPred: A Top– Down Approach For Predicting Enzyme Functional Classes And Subclasses,” Biochem Biophys Res Commun, vol. 364, no. 1, pp. 53–59, Dec. 2007, doi: 10.1016/J.BBRC.2007.09.098. H. Bin Shen K. C. Chou EzyPred: A Top– Down Approach For Predicting Enzyme Functional Classes And Subclasses ,” Biochem Biophys Res Commun , vol. 364 , no. 1 , pp. 53 59 , Dec . 2007 , doi: 10.1016/J.BBRC.2007.09.098 . Open DOISearch in Google Scholar

A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, “ECPred: A Tool For The Prediction Of The Enzymatic Functions Of Protein Sequences Based On The EC Nomenclature,” BMC Bioinformatics, vol. 19, no. 1, Sep. 2018, doi: 10.1186/s12859-018-2368-y. A. Dalkiran A. S. Rifaioglu M. J. Martin R. Cetin-Atalay V. Atalay T. Doğan ECPred: A Tool For The Prediction Of The Enzymatic Functions Of Protein Sequences Based On The EC Nomenclature ,” BMC Bioinformatics , vol. 19 , no. 1 , Sep . 2018 , doi: 10.1186/s12859-018-2368-y . Open DOISearch in Google Scholar

T. Sanderson, M. L. Bileschi, D. Belanger, and L. J. Colwell, “ProteInfer, Deep Neural Networks for Protein Functional Inference,” Elife, vol. 12, 2023, doi: 10.7554/eLife.80942. T. Sanderson M. L. Bileschi D. Belanger L. J. Colwell ProteInfer, Deep Neural Networks for Protein Functional Inference ,” Elife , vol. 12 , 2023 , doi: 10.7554/eLife.80942 . Open DOISearch in Google Scholar