In this paper, the extended Fan sub-equation method to obtain the exact solutions of the generalized time fractional Burgers-Fisher equation is applied. By applying this method, we obtain different solutions that are benefit to further comprise the concepts of complex nonlinear physical phenomena. This method is simple and can be applied to several nonlinear equations. Fractional derivatives are taken in the sense of Jumarie’s modified Riemann-Liouville derivative. A comparative study with the other methods approves the validity and effectiveness of the technique, and on the other hand, for suitable parameter values, we plot 2D and 3D graphics of the exact solutions by using the extended Fan sub-equation method. In this work, we use Mathematica for computations and programming.
In the present work, the author studied some properties of the modified Bessel’s functions and Airy functions. It is worth mentioning that the Airy functions are used in many fields of physics. They are applied in many branches of classical and quantum physics. The author also studied certain properties of the Airy transform and derived some new integral relations involving the Airy functions. Non-trivial illustrative examples are provided as well. All the results are presented in lucid and comprehensible language.
The problems of existence of limit cycles and their numbers are the most difficult problems in the dynamical planar systems. In this paper, we study the limit cycles for a family of polynomial differential systems of degree 6k + 1, k ∈ ℕ*, with the non-elementary singular point. Under some suitable conditions, we show our system exhibiting two non algebraic or two algebraic limit cycles explicitly given. To illustrate our results we present some examples.
In this paper, we deal with the discontinuous piecewise differential linear systems formed by two differential systems separated by a straight line when one of these two differential systems is a linear without equilibria and the other is a linear center. We are going to show that the maximum number of crossing limit cycles is one, and if exists, it is non algebraic and analytically given.
Keywords
limit cycle
first integral
discontinuous piecewise linear differential system
This paper is concerned with the controllability of impulsive differential equations with nonlocal conditions. First, we establish a property of measure of noncompactness in the space of piecewise continuous functions. Then, by using this property and Darbo-Sadovskii’s Fixed Point Theorem, we get the controllability of nonlocal impulsive differential equations under compactness conditions, Lipschitz conditions and mixed-type conditions, respectively.
Published Online: 01 Jan 2022 Page range: 81 - 100
Abstract
Abstract
This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form
Δx(n)+p(n)x(τ(n))=0,n∈ℕ0[∇x(n)−q(n)x(σ(n))=0,n∈ℕ],\[\Delta x(n) + p(n)x(\tau (n)) = 0,\,n \in {_0}\quad [\nabla x(n) - q(n)x(\sigma (n)) = 0,\,n \in ],\
, where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0,(σ(n))n≥1\[{(\tau (n))_{n \ge 0}},\quad {(\sigma (n))_{n \ge 1}}\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.
Published Online: 01 Jan 2022 Page range: 101 - 118
Abstract
Abstract
Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation
Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ,
\[\Delta [\gamma (\ell ){[\alpha (\ell ) + \beta (\ell ){\Delta ^\mu }u(\ell )]^\eta }] + \phi (\ell )f[G(\ell )] = 0,\ell \in {N_{{\ell _0} + 1 - \mu }},\] where ℓ0>0,G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\[{\ell _0} > 0,\quad G(\ell ) = \sum\limits_{j = {\ell _0}}^{\ell - 1 + \mu } {{{(\ell - j - 1)}^{( - \mu )}}u(j)} \] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.
Published Online: 01 Jan 2022 Page range: 119 - 134
Abstract
Abstract
The authors examine the oscillation of second-order nonlinear differential equations with mixed nonlinear neutral terms. They present new oscillation criteria that improve, extend, and simplify existing ones in the literature. The results are illustrated by some examples.
Published Online: 01 Jan 2022 Page range: 135 - 148
Abstract
Abstract
In this work, there are considered higher order fractional operators defined in the sense of Katugampola. There are proved some fundamental properties of the Katugampola fractional operators of any arbitrary real order. Moreover, there are given conditions ensuring existence of the higher order Katugampola fractional derivative in space of the absolutely continuous functions.
Published Online: 01 Jan 2022 Page range: 149 - 162
Abstract
Abstract
The system of nonlinear neutral difference equations with delays in the form {Δ(yi(n)+pi(n)yi(n−τi))=ai(n)fi(yi+1(n))+gi(n),Δ(ym(n)+pm(n)ym(n−τm))=am(n)fm(y1(n))+gm(n),\[\left\{ \begin{array}{l}
\Delta ({y_i}(n) + {p_i}(n){y_i}(n - {\tau _i})) = {a_i}(n){f_i}({y_{i + 1}}(n)) + {g_i}(n),\\
\Delta ({y_m}(n) + {p_m}(n){y_m}(n - {\tau _m})) = {a_m}(n){f_m}({y_1}(n)) + {g_m}(n),
\end{array} \right.\] for i = 1, . . . , m − 1, m ≥ 2, is studied. The sufficient conditions for the existence of an asymptotically periodic solution of the above system, are established. Here sequences (pi(n)), i = 1,..., m, are bounded away from -1. The presented results are illustrated by theoretical and numerical examples.
Published Online: 01 Jan 2022 Page range: 163 - 198
Abstract
Abstract
In the presented paper, the main attention is given to fractal sets whose elements have certain restrictions on using digits or combinations of digits in their own nega-P-representation. Topological, metric, and fractal properties of images of certain self-similar fractals under the action of some singular distributions, are investigated.
Published Online: 01 Jan 2022 Page range: 199 - 212
Abstract
Abstract
We study the existence and multiplicity of positive solutions for a third-order two-point boundary value problem by applying Krasnosel’skii’s fixed point theorem. To illustrate the applicability of the obtained results, we consider some examples.
In this paper, the extended Fan sub-equation method to obtain the exact solutions of the generalized time fractional Burgers-Fisher equation is applied. By applying this method, we obtain different solutions that are benefit to further comprise the concepts of complex nonlinear physical phenomena. This method is simple and can be applied to several nonlinear equations. Fractional derivatives are taken in the sense of Jumarie’s modified Riemann-Liouville derivative. A comparative study with the other methods approves the validity and effectiveness of the technique, and on the other hand, for suitable parameter values, we plot 2D and 3D graphics of the exact solutions by using the extended Fan sub-equation method. In this work, we use Mathematica for computations and programming.
In the present work, the author studied some properties of the modified Bessel’s functions and Airy functions. It is worth mentioning that the Airy functions are used in many fields of physics. They are applied in many branches of classical and quantum physics. The author also studied certain properties of the Airy transform and derived some new integral relations involving the Airy functions. Non-trivial illustrative examples are provided as well. All the results are presented in lucid and comprehensible language.
The problems of existence of limit cycles and their numbers are the most difficult problems in the dynamical planar systems. In this paper, we study the limit cycles for a family of polynomial differential systems of degree 6k + 1, k ∈ ℕ*, with the non-elementary singular point. Under some suitable conditions, we show our system exhibiting two non algebraic or two algebraic limit cycles explicitly given. To illustrate our results we present some examples.
In this paper, we deal with the discontinuous piecewise differential linear systems formed by two differential systems separated by a straight line when one of these two differential systems is a linear without equilibria and the other is a linear center. We are going to show that the maximum number of crossing limit cycles is one, and if exists, it is non algebraic and analytically given.
Keywords
limit cycle
first integral
discontinuous piecewise linear differential system
This paper is concerned with the controllability of impulsive differential equations with nonlocal conditions. First, we establish a property of measure of noncompactness in the space of piecewise continuous functions. Then, by using this property and Darbo-Sadovskii’s Fixed Point Theorem, we get the controllability of nonlocal impulsive differential equations under compactness conditions, Lipschitz conditions and mixed-type conditions, respectively.
This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form
Δx(n)+p(n)x(τ(n))=0,n∈ℕ0[∇x(n)−q(n)x(σ(n))=0,n∈ℕ],\[\Delta x(n) + p(n)x(\tau (n)) = 0,\,n \in {_0}\quad [\nabla x(n) - q(n)x(\sigma (n)) = 0,\,n \in ],\
, where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0,(σ(n))n≥1\[{(\tau (n))_{n \ge 0}},\quad {(\sigma (n))_{n \ge 1}}\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.
Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation
Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ,
\[\Delta [\gamma (\ell ){[\alpha (\ell ) + \beta (\ell ){\Delta ^\mu }u(\ell )]^\eta }] + \phi (\ell )f[G(\ell )] = 0,\ell \in {N_{{\ell _0} + 1 - \mu }},\] where ℓ0>0,G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\[{\ell _0} > 0,\quad G(\ell ) = \sum\limits_{j = {\ell _0}}^{\ell - 1 + \mu } {{{(\ell - j - 1)}^{( - \mu )}}u(j)} \] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.
The authors examine the oscillation of second-order nonlinear differential equations with mixed nonlinear neutral terms. They present new oscillation criteria that improve, extend, and simplify existing ones in the literature. The results are illustrated by some examples.
In this work, there are considered higher order fractional operators defined in the sense of Katugampola. There are proved some fundamental properties of the Katugampola fractional operators of any arbitrary real order. Moreover, there are given conditions ensuring existence of the higher order Katugampola fractional derivative in space of the absolutely continuous functions.
The system of nonlinear neutral difference equations with delays in the form {Δ(yi(n)+pi(n)yi(n−τi))=ai(n)fi(yi+1(n))+gi(n),Δ(ym(n)+pm(n)ym(n−τm))=am(n)fm(y1(n))+gm(n),\[\left\{ \begin{array}{l}
\Delta ({y_i}(n) + {p_i}(n){y_i}(n - {\tau _i})) = {a_i}(n){f_i}({y_{i + 1}}(n)) + {g_i}(n),\\
\Delta ({y_m}(n) + {p_m}(n){y_m}(n - {\tau _m})) = {a_m}(n){f_m}({y_1}(n)) + {g_m}(n),
\end{array} \right.\] for i = 1, . . . , m − 1, m ≥ 2, is studied. The sufficient conditions for the existence of an asymptotically periodic solution of the above system, are established. Here sequences (pi(n)), i = 1,..., m, are bounded away from -1. The presented results are illustrated by theoretical and numerical examples.
In the presented paper, the main attention is given to fractal sets whose elements have certain restrictions on using digits or combinations of digits in their own nega-P-representation. Topological, metric, and fractal properties of images of certain self-similar fractals under the action of some singular distributions, are investigated.
We study the existence and multiplicity of positive solutions for a third-order two-point boundary value problem by applying Krasnosel’skii’s fixed point theorem. To illustrate the applicability of the obtained results, we consider some examples.