The paper presents the oxidation of natural limonene (extracted from waste orange peels) by 60 wt% hydrogen peroxide, in the presence of Ti-MCM-41 catalyst and in methanol as the solvent. The aim of the research was to develop the most favorable technological parameters for the process of limonene oxidation (temperature, molar ratio of limonene to hydrogen peroxide, methanol concentration, Ti-MCM-41 catalyst content and reaction time) by analyzing changes in the main functions describing this process: the conversion of limonene, selectivities of appropriate products, the conversion of hydrogen peroxide and the effective conversion of hydrogen peroxide. The process is environmentally friendly process and it uses renewable raw material - limonene and a safe oxidant -hydrogen peroxide. During the study, very valuable oxygenated derivatives of limonene were obtained: 1,2-epoxylimonene, its diol, carvone, carveol, and perillyl alcohol. These compounds are used in medicine, cosmetics, perfumery, food and polymers industries.
The influence of impellers system and type of liquid on the gas hold-up in the vessel has been presented in this paper. The analysis of gas hold-up was conducted on the basis of the data obtained in the vessel of the diameter D = 0.288 m, where the vessel was filled by a liquid up to the height H = 2D. The vessel was equipped in 24 vertical tubular baffles located on the circuit and two high-speed impellers situated on a shaft. Five different configurations of high-speed impellers were employed. The experiments in the gas-liquid system were conducted for setups which differed in capability of gas bubbles coalescence. The results of the experiment of the gas holdup for the five impellers configurations and four gas-liquid systems were presented in the graphic form and they were described mathematically.
In this article, the dynamic responses of heat exchanger networks to disturbance and setpoint change were studied. Various control strategies, including: proportional integral, model predictive control, passivity approach, and passivity-based model predictive control were used to monitor all outlet temperatures. The performance of controllers was analyzed through two procedures: 1) inducing a ±5% step disturbance in the supply temperature, or 2) tracking a ±5°C target temperature. The performance criteria used to evaluate these various control modes was settling time and percentage overshoot. According to the results, the passivity-based model predictive controllers produced the best performance to reject the disturbance and the model predictive control proved to be the best controller to track the setpoint. Whereas, the ensuing performance results of both the PI and passivity controllers were discovered to be only acceptable.
A fast, simple, and economical method for extraction, preconcentration and determination of cobalt, nickel and copper as their 1-(2-pyridilazo) 2-naphthol (PAN) complexes based on ultrasound-assisted emulsification–microextraction (USAEME) and multivariate calibration of spectrophotometric data is presented. Various parameters affecting the extraction efficiency were optimized both with univariate and Box–Behnken design. The resolution of ternary mixtures of these metallic ions was accomplished by using partial least-squares regression (PLS), orthogonal signal correction-partial least-squares regression (OSC-PLS), and orthogonal signal correction-genetic algorithmspartial least-squares regression (OSC-GA-PLS). Under the optimum conditions, the calibration graphs were linear in the range of 2.0–150.0, 2.0–120.0 and 2.0–150.0 ng mL−1 for Co2+, Ni2+, and Cu2+, respectively, with a limit of detection of 0.14 (Co2+), 0.13 (Ni2+) and 0.14 ng mL−1 (Cu2+) and the relative standard deviation was <2.5%. The method was successfully applied to the simultaneous determination of these cations in different samples.
The paper presents results of studies of composite nickel/graphene coatings produced by electrodeposition method on a steel substrate. The method of producing composite coatings with nanocrystalline nickel matrix and dispersion phase in the form of graphene is presented. For comparative purposes, the study also includes nano-crystalline Ni coatings produced by electrochemical reduction without built-in graphene flakes. Graphene was characterized by Raman spectroscopy, transmission and scanning electron microscopes. Results of studies on the structure and morphology of Ni and Ni/graphene layers produced in a bath containing different amounts of graphene are presented. Material of the coatings was characterized by SEM, light microscopy, X-ray diffraction. The microhardness of the coatings was examined by Knoop measurements. The adhesion of the coatings with the substrate was tested using a scratchtester. The influence of graphene on the structure and properties of composite coatings deposited from a bath with different graphene contents was determined.
Styrene is a valuable commodity for polymer industries. The main route for producing styrene by dehydrogenation of ethylbenzene consumes a substantial amount of energy because of the use of high-temperature steam. In this work, the process energy requirements and recovery are studied using Exergy analysis and Heat Integration (HI) based on Pinch design method. The amount of steam plays a key role in the trade-off between Styrene yield and energy savings. Therefore, optimizing the operating conditions for energy reduction is infeasible. Heat integration indicated an insignificant reduction in the net energy demand and exergy losses, but 24% and 34% saving in external heating and cooling duties, respectively. When the required steam is generated by recovering the heat of the hot reactor effluent, a considerable saving in the net energy demand, as well as the heating and cooling utilities, can be achieved. Moreover, around 68% reduction in the exergy destruction is observed.
Sludge conditioning is an important stage in sludge management. In the present study, a sequence of freeze/thaw-electro-Fenton process was designed and specific resistance filtration (SRF) was monitored during sludge conditioning as an important factor in sludge dewaterability. Furthermore, protein and polysaccharide concentrations were measured during the experiments. Results showed that the lowest SRF value contributed to −10°C in freezing process which showed a reducing trend by decreasing solution pH. In addition, results revealed that solution pH less than 3 caused a significant improvement in sludge dewatering; so the lowest SRF has been registered at pH = 2. By increasing current intensity from 0.5 to 1A, SRF values were reduced and then followed by an enhancement with increasing current intensity to 3.2 A. The lowest SRF value (6.1 × 104 m/kg) was obtained at H2O2 = 30 mg/L which was the best conditions for sludge dewatering.
The paper presents the results of the studies of nickel-graphene composite coatings deposited by the electrochemical reduction method. A bath with low concentration of nickel ions, graphene as dispersed particles and organic compounds were used for deposition of the composite coatings nickel-graphene. The results of investigations of coatings deposited from the electrolyte containing 0.33, 0.5 and 1 g/dm3 graphene and two surface-active compounds were shown. The particles content in the coatings, the surface morphology, the cross-sectional structures of the coated samples, thickness and internal stresses were measured. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl solution. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The applications of organic addition agents was advantageous because it caused compressive stresses in the coatings. All of the nickel-graphene composite coatings had better corrosion resistance than the nickel coatings.
In order to improve the performance of the shell and tube heat exchanger, a porous baffle and a splitter bar are employed in this research. Through the arrangement of the porous baffle in the tube-side inlet and the splitter bar in the tube, the flow distribution of liquid in the heat exchanger is improved. PIV technology is used to investigate the unsteady flow in the tube-side inlet and the outlet of different models. The porous baffle significantly improves the flow of fluid in the shell and tube heat exchanger, especially by eliminating/minimizing the maldistribution of fluid flow in the tube-side inlet. The performance of the arc baffle is better than that of the straight baffle. The splitter bar has a minimal effect on the flow field of the tube-side inlet, but it effectively improves the flow in the tube bundle and restrains the vortex generation in the tube-side outlet.
The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.
Four different compositions of polylactide/thermoplastic starch blends (PLA/TPS blends) for application as drug carriers were examined. Initially, using cyanocobalamin (1.355 kDa) as a model compound, the blend with the highest starch content (wt. 60%) was selected for further research of mass transfer phenomenon. In this case, different concentrations of acetaminophen (0.151 kDa), doxorubicin hydrochloride (0.580 kDa) and cyanocobalamin (1.355 kDa) were used for determination of particular releasing profiles. Besides from the comparative analysis of obtained results, the values of the overall mass transfer coefficient (K) were calculated for each of tested drug molecules. Depending on the size and properties of used compound, determined values of the coefficient range from 10−11 to 10−13 m/s. Based on these outcomes, it could be stated that PLA/TPS blend selected in preliminary research, seems to be preferred material for fabrication of long-term drug delivery systems, which could be successfully applied for example in anti-cancer therapy.
The operation parameters for the supercritical carbon dioxide (ScCO2) evaporation method greatly affect the properties of the prepared drug-loaded micelles. In this study, the effects of those key parameters on the drug-loading content (LC) and drug entrapment efficiency (EE) are discussed. It is observed that EE and LC of the micelles are slightly increased with the enhancing temperature and the copolymer molecular ratio of hydrophilic/hydrophobic segment, while decreased with the enhancing ScCO2 evaporation rate. The pressure and volume ratio of ScCO2 to H2O are observed the optimum condition. In addition, the verification experiment is carried out under the obtained optimizing parameters. The prepared micelles exhibit relatively regular spherical shape and narrow size distribution with the EE and LC value of 70.7% and 14.1%, respectively.
A poly(hydroxybutyl citrate) p(HBC) was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR). The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC) from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams) and with Solkane 365/227 (S foams). The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01).
Published Online: 16 Apr 2018 Page range: 96 - 102
Abstract
Abstract
This work reports on the process of phenol electrooxidation, which is carried-out through continuous electrolysis of synthetic, sodium sulphate-based wastewater. Phenol electrodegradation is examined by means of a laboratory size (ca. 700 cm3 of working volume), poly (methyl methacrylate)-made electrolyser unit for various, carbon fibre and graphite-based anode configurations, and stainless steel cathodes, two different current-densities and concentrations of phenol in synthetically prepared wastewater solution. Proper monitoring of phenol degradation (including quantitative identification of reaction products and calculation of specific energy consumption) in wastewater is performed by means of instrumental, combined HPLC and MS technique in function of electrolysis time.
Published Online: 16 Apr 2018 Page range: 103 - 108
Abstract
Abstract
Ordered nanocrystalline titania-mesoporous silica nanotube structures are synthesized by hydrolysis of the titania precursor inside pours silica shell. Silica coating surrounding carbon nanotubes was further removed by thermal reduction. The proposed method of functionalization silica channels with the titania nanoparticles preclude aggregation of TiO2 nanoparticles. The nanocrystalline silica/titania (mt-SiO2/TiO2) nanotubes were prepared according to the describe method has high specific surface area and possesses excellent photocatalytic properties capable of decomposing phenol and methylene blue in a short time. Since the nanocrystalline TiO2 is produced in the wall of the mesoporous silica tube, phenol or dye molecules can react with TiO2 nanoparticles from both the inside and outside.
The paper presents the oxidation of natural limonene (extracted from waste orange peels) by 60 wt% hydrogen peroxide, in the presence of Ti-MCM-41 catalyst and in methanol as the solvent. The aim of the research was to develop the most favorable technological parameters for the process of limonene oxidation (temperature, molar ratio of limonene to hydrogen peroxide, methanol concentration, Ti-MCM-41 catalyst content and reaction time) by analyzing changes in the main functions describing this process: the conversion of limonene, selectivities of appropriate products, the conversion of hydrogen peroxide and the effective conversion of hydrogen peroxide. The process is environmentally friendly process and it uses renewable raw material - limonene and a safe oxidant -hydrogen peroxide. During the study, very valuable oxygenated derivatives of limonene were obtained: 1,2-epoxylimonene, its diol, carvone, carveol, and perillyl alcohol. These compounds are used in medicine, cosmetics, perfumery, food and polymers industries.
The influence of impellers system and type of liquid on the gas hold-up in the vessel has been presented in this paper. The analysis of gas hold-up was conducted on the basis of the data obtained in the vessel of the diameter D = 0.288 m, where the vessel was filled by a liquid up to the height H = 2D. The vessel was equipped in 24 vertical tubular baffles located on the circuit and two high-speed impellers situated on a shaft. Five different configurations of high-speed impellers were employed. The experiments in the gas-liquid system were conducted for setups which differed in capability of gas bubbles coalescence. The results of the experiment of the gas holdup for the five impellers configurations and four gas-liquid systems were presented in the graphic form and they were described mathematically.
In this article, the dynamic responses of heat exchanger networks to disturbance and setpoint change were studied. Various control strategies, including: proportional integral, model predictive control, passivity approach, and passivity-based model predictive control were used to monitor all outlet temperatures. The performance of controllers was analyzed through two procedures: 1) inducing a ±5% step disturbance in the supply temperature, or 2) tracking a ±5°C target temperature. The performance criteria used to evaluate these various control modes was settling time and percentage overshoot. According to the results, the passivity-based model predictive controllers produced the best performance to reject the disturbance and the model predictive control proved to be the best controller to track the setpoint. Whereas, the ensuing performance results of both the PI and passivity controllers were discovered to be only acceptable.
A fast, simple, and economical method for extraction, preconcentration and determination of cobalt, nickel and copper as their 1-(2-pyridilazo) 2-naphthol (PAN) complexes based on ultrasound-assisted emulsification–microextraction (USAEME) and multivariate calibration of spectrophotometric data is presented. Various parameters affecting the extraction efficiency were optimized both with univariate and Box–Behnken design. The resolution of ternary mixtures of these metallic ions was accomplished by using partial least-squares regression (PLS), orthogonal signal correction-partial least-squares regression (OSC-PLS), and orthogonal signal correction-genetic algorithmspartial least-squares regression (OSC-GA-PLS). Under the optimum conditions, the calibration graphs were linear in the range of 2.0–150.0, 2.0–120.0 and 2.0–150.0 ng mL−1 for Co2+, Ni2+, and Cu2+, respectively, with a limit of detection of 0.14 (Co2+), 0.13 (Ni2+) and 0.14 ng mL−1 (Cu2+) and the relative standard deviation was <2.5%. The method was successfully applied to the simultaneous determination of these cations in different samples.
The paper presents results of studies of composite nickel/graphene coatings produced by electrodeposition method on a steel substrate. The method of producing composite coatings with nanocrystalline nickel matrix and dispersion phase in the form of graphene is presented. For comparative purposes, the study also includes nano-crystalline Ni coatings produced by electrochemical reduction without built-in graphene flakes. Graphene was characterized by Raman spectroscopy, transmission and scanning electron microscopes. Results of studies on the structure and morphology of Ni and Ni/graphene layers produced in a bath containing different amounts of graphene are presented. Material of the coatings was characterized by SEM, light microscopy, X-ray diffraction. The microhardness of the coatings was examined by Knoop measurements. The adhesion of the coatings with the substrate was tested using a scratchtester. The influence of graphene on the structure and properties of composite coatings deposited from a bath with different graphene contents was determined.
Styrene is a valuable commodity for polymer industries. The main route for producing styrene by dehydrogenation of ethylbenzene consumes a substantial amount of energy because of the use of high-temperature steam. In this work, the process energy requirements and recovery are studied using Exergy analysis and Heat Integration (HI) based on Pinch design method. The amount of steam plays a key role in the trade-off between Styrene yield and energy savings. Therefore, optimizing the operating conditions for energy reduction is infeasible. Heat integration indicated an insignificant reduction in the net energy demand and exergy losses, but 24% and 34% saving in external heating and cooling duties, respectively. When the required steam is generated by recovering the heat of the hot reactor effluent, a considerable saving in the net energy demand, as well as the heating and cooling utilities, can be achieved. Moreover, around 68% reduction in the exergy destruction is observed.
Sludge conditioning is an important stage in sludge management. In the present study, a sequence of freeze/thaw-electro-Fenton process was designed and specific resistance filtration (SRF) was monitored during sludge conditioning as an important factor in sludge dewaterability. Furthermore, protein and polysaccharide concentrations were measured during the experiments. Results showed that the lowest SRF value contributed to −10°C in freezing process which showed a reducing trend by decreasing solution pH. In addition, results revealed that solution pH less than 3 caused a significant improvement in sludge dewatering; so the lowest SRF has been registered at pH = 2. By increasing current intensity from 0.5 to 1A, SRF values were reduced and then followed by an enhancement with increasing current intensity to 3.2 A. The lowest SRF value (6.1 × 104 m/kg) was obtained at H2O2 = 30 mg/L which was the best conditions for sludge dewatering.
The paper presents the results of the studies of nickel-graphene composite coatings deposited by the electrochemical reduction method. A bath with low concentration of nickel ions, graphene as dispersed particles and organic compounds were used for deposition of the composite coatings nickel-graphene. The results of investigations of coatings deposited from the electrolyte containing 0.33, 0.5 and 1 g/dm3 graphene and two surface-active compounds were shown. The particles content in the coatings, the surface morphology, the cross-sectional structures of the coated samples, thickness and internal stresses were measured. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl solution. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The applications of organic addition agents was advantageous because it caused compressive stresses in the coatings. All of the nickel-graphene composite coatings had better corrosion resistance than the nickel coatings.
In order to improve the performance of the shell and tube heat exchanger, a porous baffle and a splitter bar are employed in this research. Through the arrangement of the porous baffle in the tube-side inlet and the splitter bar in the tube, the flow distribution of liquid in the heat exchanger is improved. PIV technology is used to investigate the unsteady flow in the tube-side inlet and the outlet of different models. The porous baffle significantly improves the flow of fluid in the shell and tube heat exchanger, especially by eliminating/minimizing the maldistribution of fluid flow in the tube-side inlet. The performance of the arc baffle is better than that of the straight baffle. The splitter bar has a minimal effect on the flow field of the tube-side inlet, but it effectively improves the flow in the tube bundle and restrains the vortex generation in the tube-side outlet.
The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.
Four different compositions of polylactide/thermoplastic starch blends (PLA/TPS blends) for application as drug carriers were examined. Initially, using cyanocobalamin (1.355 kDa) as a model compound, the blend with the highest starch content (wt. 60%) was selected for further research of mass transfer phenomenon. In this case, different concentrations of acetaminophen (0.151 kDa), doxorubicin hydrochloride (0.580 kDa) and cyanocobalamin (1.355 kDa) were used for determination of particular releasing profiles. Besides from the comparative analysis of obtained results, the values of the overall mass transfer coefficient (K) were calculated for each of tested drug molecules. Depending on the size and properties of used compound, determined values of the coefficient range from 10−11 to 10−13 m/s. Based on these outcomes, it could be stated that PLA/TPS blend selected in preliminary research, seems to be preferred material for fabrication of long-term drug delivery systems, which could be successfully applied for example in anti-cancer therapy.
The operation parameters for the supercritical carbon dioxide (ScCO2) evaporation method greatly affect the properties of the prepared drug-loaded micelles. In this study, the effects of those key parameters on the drug-loading content (LC) and drug entrapment efficiency (EE) are discussed. It is observed that EE and LC of the micelles are slightly increased with the enhancing temperature and the copolymer molecular ratio of hydrophilic/hydrophobic segment, while decreased with the enhancing ScCO2 evaporation rate. The pressure and volume ratio of ScCO2 to H2O are observed the optimum condition. In addition, the verification experiment is carried out under the obtained optimizing parameters. The prepared micelles exhibit relatively regular spherical shape and narrow size distribution with the EE and LC value of 70.7% and 14.1%, respectively.
A poly(hydroxybutyl citrate) p(HBC) was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR). The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC) from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams) and with Solkane 365/227 (S foams). The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01).
This work reports on the process of phenol electrooxidation, which is carried-out through continuous electrolysis of synthetic, sodium sulphate-based wastewater. Phenol electrodegradation is examined by means of a laboratory size (ca. 700 cm3 of working volume), poly (methyl methacrylate)-made electrolyser unit for various, carbon fibre and graphite-based anode configurations, and stainless steel cathodes, two different current-densities and concentrations of phenol in synthetically prepared wastewater solution. Proper monitoring of phenol degradation (including quantitative identification of reaction products and calculation of specific energy consumption) in wastewater is performed by means of instrumental, combined HPLC and MS technique in function of electrolysis time.
Ordered nanocrystalline titania-mesoporous silica nanotube structures are synthesized by hydrolysis of the titania precursor inside pours silica shell. Silica coating surrounding carbon nanotubes was further removed by thermal reduction. The proposed method of functionalization silica channels with the titania nanoparticles preclude aggregation of TiO2 nanoparticles. The nanocrystalline silica/titania (mt-SiO2/TiO2) nanotubes were prepared according to the describe method has high specific surface area and possesses excellent photocatalytic properties capable of decomposing phenol and methylene blue in a short time. Since the nanocrystalline TiO2 is produced in the wall of the mesoporous silica tube, phenol or dye molecules can react with TiO2 nanoparticles from both the inside and outside.