- Détails du magazine
- Format
- Magazine
- eISSN
- 2309-5377
- Première publication
- 30 Dec 2013
- Période de publication
- 2 fois par an
- Langues
- Anglais
Chercher
- Accès libre
Discrete Correlation of Order 2 of Generalized Rudin-Shapiro Sequences on Alphabets of Arbitrary Size
Pages: 1 - 26
Résumé
In 2009, Grant, Shallit, and Stoll [Acta Arith.
Mots clés
- discrete correlation
- Rudin-Shapiro sequence
- difference matrix
- exponential sums
MSC 2010
- 11A63
- 11K31
- 68R15
- Accès libre
On the (VilB 2; α ; γ )-Diaphony of the Nets of Type of Zaremba–Halton Constructed in Generalized Number System
Pages: 27 - 50
Résumé
In the present paper the so-called (VilBs; α; γ)-diaphony as a quantitative measure for the distribution of sequences and nets is considered. A class of two-dimensional nets
Mots clés
- Diaphony
- Vilenkin function
- Walsh function
- nets of type of Zaremba-Halton
- van der Corput sequence
MSC 2010
- 11K06
- 11K31
- 11K36
- 65C05
- Accès libre
A Class of Littlewood Polynomials that are Not L α -Flat
Pages: 51 - 74
Résumé
We exhibit a class of Littlewood polynomials that are not
Mots clés
- Merit factor
- flat polynomials
- ultraflat polynomials
- Erd˝ os-Newman flatness problem
- Littlewood flatness problem
- digital transmission
- palindromic polynomial
- TurynGolay’s conjecture
MSC 2010
- Primary 42A05, 42A55
- Secondary 37A05, 37A30
- Accès libre
Kummer Theory for Number Fields and the Reductions of Algebraic Numbers II
Pages: 75 - 92
Résumé
Let
Mots clés
- Number field
- reduction
- multiplicative order
- arithmetic progression
- density
MSC 2010
- Primary: 11R44
- Secondary: 11R45,11R18, 11R21
- Accès libre
Notes on the Distribution of Roots Modulo a Prime of a Polynomial III
Pages: 93 - 104
Résumé
Let
Mots clés
- Equidistribution
- polynomial
- roots modulo a prime
MSC 2010
- 11K
- Accès libre
Quantization for a Mixture of Uniform Distributions Associated with Probability Vectors
Pages: 105 - 142
Résumé
The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus approximation of a continuous probability distribution by a discrete distribution. Mixtures of probability distributions, also known as mixed distributions, are an exciting new area for optimal quantization. In this paper, we investigate the optimal quantization for three different mixed distributions generated by uniform distributions associated with probability vectors.
Mots clés
- Mixed distribution
- uniform distribution
- optimal sets
- quantization error
- quantization dimension
- quantization coefficient
MSC 2010
- 60Exx
- 94A34