À propos de cet article

Citez

Yang L., Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes., Talanta 2008;74(5):1621-9.10.1016/j.talanta.2007.10.01818371827YangL.Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodesTalanta200874516219Open DOISearch in Google Scholar

Zheng S, Liu M, Tai YC., Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing., Biomed Microdevices 2008;10(2):221-31.10.1007/s10544-007-9128-517876707ZhengSLiuMTaiYC.Micro coulter counters with platinum black electroplated electrodes for human blood cell sensingBiomed Microdevices200810222131Open DOISearch in Google Scholar

Asphahani F, Zhang M., Cellular impedance biosensors for drug screening and toxin detection., Analyst 2007; 132(9):835-41.1771025810.1039/b704513aAsphahaniFZhangM.Cellular impedance biosensors for drug screening and toxin detectionAnalyst2007132983541Search in Google Scholar

Jang LS, Wang MH., Microfluidic device for cell capture and impedance measurement., Biomed Microdevices 2007;9(5):737-43.1750828510.1007/s10544-007-9084-0JangLSWangMH.Microfluidic device for cell capture and impedance measurementBiomed Microdevices20079573743Search in Google Scholar

Zhou H, Tilton RD, White LR., The role of electrode impedance and electrode geometry in the design of microelectrode systems., J Coll Interf Sci 2006;297:819-31.10.1016/j.jcis.2005.11.024ZhouHTiltonRDWhiteLR.The role of electrode impedance and electrode geometry in the design of microelectrode systemsJ Coll Interf Sci200629781931Open DOISearch in Google Scholar

Pernkopf W, Sagl M, Fafilek G, Besenhard JO, Kronberger H, Nauer GE., Applications of microelectrodes in impedance spectroscopy., Solid State Ionics 2005;176:2031-6.10.1016/j.ssi.2004.12.016PernkopfWSaglMFafilekGBesenhardJOKronbergerHNauerGE.Applications of microelectrodes in impedance spectroscopySolid State Ionics200517620316Open DOISearch in Google Scholar

Price DT, Rahman ARA, Bhansali S., Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS)., Biosensors and Bioelectronics 2008;24(7):2071-6.PriceDTRahmanARABhansaliS.Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS)Biosensors and Bioelectronics20082472071610.1016/j.bios.2008.10.026Search in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press; 2000.GrimnesSMartinsenOGBioimpedance and Bioelectricity BasicsAcademic Press200010.1016/B978-012303260-7/50009-5Search in Google Scholar

Foster KR, Schwan HP., Dielectric properties of tissues and biological materials : A critical review., CRC Crit Rev Biomed Eng 1989;17:25-104.FosterKRSchwanHP.Dielectric properties of tissues and biological materials : A critical reviewCRC Crit Rev Biomed Eng19891725104Search in Google Scholar

Muller MR, Salat A, Pulaki S, Stangl P, Ergun E, Schreiner W, et al., Influence of hematocrit and platelet count on impedance and reactivity of whole blood for electrical aggregometry., J Pharmacol Toxicol Methods 1995;34(1):17-22.10.1016/1056-8719(94)00075-F7496042MullerMRSalatAPulakiSStanglPErgunESchreinerWInfluence of hematocrit and platelet count on impedance and reactivity of whole blood for electrical aggregometryJ Pharmacol Toxicol Methods19953411722Open DOISearch in Google Scholar

Zhao TX, Lockner D., Electrical impedance and erythrocyte sedimentation rate (ESR) of blood., Biochim Biophys Acta 1993;1153(2):243-8.10.1016/0005-2736(93)90411-R8274493ZhaoTXLocknerD.Electrical impedance and erythrocyte sedimentation rate (ESR) of bloodBiochim Biophys Acta1993115322438Open DOISearch in Google Scholar

Pethig R, Kell DB., The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology., Phys Med Biol 1987;32(8):933-70.10.1088/0031-9155/32/8/0013306721PethigRKellDB.The passive electrical properties of biological systems: their significance in physiology. biophysics and biotechnologyPhys Med Biol198732893370Open DOISearch in Google Scholar

Damez JL, Clerjon S, Abouelkaram S, Lepetit J., Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing., J Food Engineering 2008;85(116):122.DamezJLClerjonSAbouelkaramSLepetitJ.Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageingJ Food Engineering20088511612210.1016/j.jfoodeng.2007.07.026Search in Google Scholar

Oliver MA, Gobantes I, Arnau J, Elvira J, Riu P, Grebol N, et al., Evaluation of the electrical impedance spectroscopy (EIS) equipment for ham meat quality selection., Meat Sci 2001;58:305-12.2206226110.1016/S0309-1740(01)00033-XOliverMAGobantesIArnauJElviraJRiuPGrebolNEvaluation of the electrical impedance spectroscopy (EIS) equipment for ham meat quality selectionMeat Sci20015830512Search in Google Scholar

Chanet M, Riviere C, Eynard P., Electric impedance spectrometry for the control of manufacturing process of comminuted meat products., J Food Engineering 1999;42:153-9.10.1016/S0260-8774(99)00113-2ChanetMRiviereCEynardP.Electric impedance spectrometry for the control of manufacturing process of comminuted meat productsJ Food Engineering1999421539Open DOISearch in Google Scholar

Nacke T, Bruckner K, Goller A, Kaufhold S, Nakos X, Noack S, et al., New type of dry substances content meter using microwaves for application in biogas plant., Analytical Bioanalytical Chemistry 2006;383:252-7.NackeTBrucknerKGollerAKaufholdSNakosXNoackSNew type of dry substances content meter using microwaves for application in biogas plantAnalytical Bioanalytical Chemistry2006383252710.1007/s00216-005-0105-7Search in Google Scholar

Kell DB, Markx GH, Davey CL, Todd RW., Real-time monitoring of cellular biomass. Methods and applications., Trends Anal Chem 1990;9:190-4.10.1016/0165-9936(90)87042-KKellDBMarkxGHDaveyCLToddRW.Real-time monitoring of cellular biomass. Methods and applicationsTrends Anal Chem199091904Open DOISearch in Google Scholar

Orazem ME, Tribollet B., An integrated approach to electrochemical impedance spectroscopy., Electrochimia Acta 2008;53(25):7360-6.10.1016/j.electacta.2007.10.075OrazemMETribolletB.An integrated approach to electrochemical impedance spectroscopyElectrochimia Acta2008532573606Open DOISearch in Google Scholar

K'Owino IO, Sadik OA., Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring., Electroanalysis 2005;17(23):2101-13.10.1002/elan.200503371K'OwinoIOSadikOA.Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture MonitoringElectroanalysis20051723210113Open DOISearch in Google Scholar

Sun T, Holmes D, Green NG, Morgan H., High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences., Lab Chip 2007;7:1034-40.10.1039/b703546bSunTHolmesDGreenNGMorganH.High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequencesLab Chip2007710344017653346Open DOISearch in Google Scholar

Watkins N, Venkatesan BM., A robust electrical microcytometer with 3-dimensional hydrofocusing., Lab on a Chip 2010;9(22):3177-84.WatkinsNVenkatesanBM.A robust electrical microcytometer with 3-dimensional hydrofocusingLab on a Chip201092231778410.1039/b912214a414232019865723Search in Google Scholar

Ghanbari K, Bathaie SZ, Mousavi MF., Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor., Biosens Bioelectron 2008;23(12):1825-31.1840659810.1016/j.bios.2008.02.029GhanbariKBathaieSZMousaviMF.Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensorBiosens Bioelectron20082312182531Search in Google Scholar

Varshney M, Li Y., Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium., Talanta 2008;74(4):518-25.1837167010.1016/j.talanta.2007.06.027VarshneyMLiY.Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth mediumTalanta200874451825Search in Google Scholar

Linderholm P, Marescot L, Loke MH, Renaud P., Cell culture imaging using microimpedance tomography., IEEE Trans Biomed Eng 2008;55(1):138-46.1823235510.1109/TBME.2007.910649LinderholmPMarescotLLokeMHRenaudP.Cell culture imaging using microimpedance tomographyIEEE Trans Biomed Eng200855113846Search in Google Scholar

Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB., Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes., J Neural Eng 2008;5(1):54-67.1831081110.1088/1741-2560/5/1/006CantrellDRInayatSTafloveARuoffRSTroyJB.Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodesJ Neural Eng2008515467Search in Google Scholar

Panescu D, Webster JG, Stratbucker RA., A nonlinear finite element model of the electrode-electrolyte- skin system., IEEE Trans Biomed Eng 1994;41(7):681-7.10.1109/10.3017357927389PanescuDWebsterJGStratbuckerRA.A nonlinear finite element model of the electrode-electrolyte- skin systemIEEE Trans Biomed Eng19944176817Open DOISearch in Google Scholar

Ahuja AK, Behrend MR, Whalen JJ, Humayun MS, Weiland JD., The Dependence of Spectral Impedance on Disc Microelectrode Radius., IEEE Trans Biomed Eng 2008;55(4):1457-60.1839034010.1109/TBME.2007.912430AhujaAKBehrendMRWhalenJJHumayunMSWeilandJD.The Dependence of Spectral Impedance on Disc Microelectrode RadiusIEEE Trans Biomed Eng2008554145760Search in Google Scholar

Schwan HP. Electrical Properties of Tissue and Cell Suspensions. In: Lawrence JH, Tobias CA, editors.New York: Academic Press; 1957. p. 147.SchwanHPElectrical Properties of Tissue and Cell SuspensionsLawrenceJHTobiasCANew YorkAcademic Press195714710.1016/B978-1-4832-3111-2.50008-0Search in Google Scholar

Schwan HP., Mechanisms responsible for electrical properties of tissues and cell suspensions., Med Prog Technol 1993;19(4):163-5.8052170SchwanHP.Mechanisms responsible for electrical properties of tissues and cell suspensionsMed Prog Technol19931941635Search in Google Scholar

Pauly H, Schwan HP., Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale., Z Naturforsch 1957;14(b):125-31.PaulyHSchwanHP.Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer SchaleZ Naturforsch195714b1253110.1515/znb-1959-0213Search in Google Scholar

Raicu V, Raicu G, Turcu G., Dielectric properties of yeast cells as simulated by the two-shell model., BBA 1996;1274:143-8.8664306RaicuVRaicuGTurcuG.Dielectric properties of yeast cells as simulated by the two-shell modelBBA19961274143810.1016/0005-2728(96)00024-2Search in Google Scholar

Feldmann Y, Ermolina I, Hayashi Y., Time Domain Spectroscopy Study on biological Systems., IEEE Transactions on Dielectrics and Electrical Insulation 2003;10:728-53.10.1109/TDEI.2003.1237324FeldmannYErmolinaIHayashiY.Time Domain Spectroscopy Study on biological SystemsIEEE Transactions on Dielectrics and Electrical Insulation20031072853Open DOISearch in Google Scholar

Gabriel S, Lau RW, Gabriel C., The dielectric properties of biological tissues: III Parametric models for the dielectric spectrum of tissues., Phys Med Biol 1996;41:2271-93.893802610.1088/0031-9155/41/11/003GabrielSLauRWGabrielC.The dielectric properties of biological tissues: III Parametric models for the dielectric spectrum of tissuesPhys Med Biol199641227193Search in Google Scholar

Angersbach A, Heinz V, Knorr D., Electrophysiological model of intact and processed plant tissues:cell disintegration criteria., Biotechnol Prog 1999;15:753-62.10.1021/bp990079f10441367AngersbachAHeinzVKnorrD.Electrophysiological model of intact and processed plant tissues:cell disintegration criteriaBiotechnol Prog19991575362Open DOISearch in Google Scholar

Holmes D, Pettgrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, et al., Leukocyte analysis and differentiation using high speed microfluidic single cell impedance spectroscopy., Lab on a Chip 2009;9:2881-9.10.1039/b910053aHolmesDPettgrewDRecciusCHGwyerJDvan BerkelCHollowayJLeukocyte analysis and differentiation using high speed microfluidic single cell impedance spectroscopyLab on a Chip2009928819Open DOISearch in Google Scholar

Bragos R, Sarro E, Fontova A, Soley A, Cairo J, Bayes-Genis A, et al., Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy., Conf Proc IEEE Eng Med Biol Soc 2006;1:2106-9.17946497BragosRSarroEFontovaASoleyACairoJBayes-GenisAFour versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopyConf Proc IEEE Eng Med Biol Soc200612106910.1109/IEMBS.2006.260287Search in Google Scholar

Urdapilleta E, Bellotti M, Bonetto FJ., Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique., Phys Rev E Stat Nonlin Soft Matter Phys 2006;74(4 Pt 1):041908.10.1103/PhysRevE.74.04190817155097UrdapilletaEBellottiMBonettoFJ.Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing techniquePhys Rev E Stat Nonlin Soft Matter Phys2006744 Pt 1041908Open DOISearch in Google Scholar

Fomekong RD, Pliquett U, Pliquett F., Passive electrical properties of RBC suspensions: changes due to distribution of relaxation times in dependence on the cell volume fraction and medium conductivity., Bioelectrochem and Bioenerg 1998;47:81-8.10.1016/S0302-4598(98)00161-5FomekongRDPliquettUPliquettF.Passive electrical properties of RBC suspensions: changes due to distribution of relaxation times in dependence on the cell volume fraction and medium conductivityBioelectrochem and Bioenerg199847818Open DOISearch in Google Scholar

Cha K, Brown EF, Wilmore DW., A new bioelectrical impedance method for measurement of the erythrocyte sedimentation rate., Physiol Meas 1994;15(4):499-508.788137110.1088/0967-3334/15/4/011ChaKBrownEFWilmoreDW.A new bioelectrical impedance method for measurement of the erythrocyte sedimentation ratePhysiol Meas1994154499508Search in Google Scholar

Lee SW, Tai YC., A micro cell lysis device., Sensors and Actuators 1999;73(1-2):74-9.10.1016/S0924-4247(98)00257-XLeeSWTaiYC.A micro cell lysis deviceSensors and Actuators1999731-2749Open DOISearch in Google Scholar

Suehiro J, Shutou M, Hatano T, Hara M., High sensitive detection of biological cell using dielectrophoretic impedance measurement method combined with electropermebilization., Sensors and Actuators 2003;96:144-51.10.1016/S0925-4005(03)00517-3SuehiroJShutouMHatanoTHaraM.High sensitive detection of biological cell using dielectrophoretic impedance measurement method combined with electropermebilizationSensors and Actuators20039614451Open DOISearch in Google Scholar

Davey CL, Davey HM, Kell DB., Introduction to the Dielectric Estimation of Cellular Biomass in Real Time, with Special Emphasis on Measurements at high Volume Fractions., Analytica Chemica Acta 1993;279:155-61.10.1016/0003-2670(93)85078-XDaveyCLDaveyHMKellDB.Introduction to the Dielectric Estimation of Cellular Biomass in Real Time, with Special Emphasis on Measurements at high Volume FractionsAnalytica Chemica Acta199327915561Open DOISearch in Google Scholar

Agilent Technologies. Agilent Impedance Measurement Handbook: A guide to measurement and techniques. 2009. Ref Type: Data FileAgilent TechnologiesAgilent Impedance Measurement Handbook: A guide to measurement and techniques2009Ref Type: Data FileSearch in Google Scholar

Nelson SO, Bartley Jr. PG., Frequency and temperature dependence of the dielectric properties of food materials., Transactions of the ASAE 2002;45(4):1223-7.NelsonSOBartleyJr. PG.Frequency and temperature dependence of the dielectric properties of food materialsTransactions of the ASAE20024541223710.13031/2013.9931Search in Google Scholar

Mirtaheri P, Grimnes S, Martinsen OG., Electrode polarization impedance in weak NaCl aqueous solutions., IEEE Trans Biomed Eng 2005;52(12):2093-9.1636623210.1109/TBME.2005.857639MirtaheriPGrimnesSMartinsenOG.Electrode polarization impedance in weak NaCl aqueous solutionsIEEE Trans Biomed Eng2005521220939Search in Google Scholar

Ragheb T, Geddes LA., The polarization impedance of common electrode metals operated at low current density., Ann Biomed Eng 1991;19(2):151-63.10.1007/BF023684662048774RaghebTGeddesLA.The polarization impedance of common electrode metals operated at low current densityAnn Biomed Eng199119215163Open DOISearch in Google Scholar

Cole KS. Membranes, Ions and Impulses. University of California Press; 1968.ColeKSMembranes, Ions and ImpulsesUniversity of California Press196810.1525/9780520326514Search in Google Scholar

Gabriel S, Lau RW, Gabriel C., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz., Phys Med Biol 1996;41:2251-69.893802510.1088/0031-9155/41/11/002GabrielSLauRWGabrielC.The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHzPhys Med Biol199641225169Search in Google Scholar

Hamann CH, Vielstich W. Elektrochemie. Weinheim: Wiley-VCH Verlag GmbH; 1998.HamannCHVielstichWElektrochemieWeinheimWiley-VCH Verlag GmbH1998Search in Google Scholar

Troy JB, Cantrell DR, Taflove A, Ruoff RS., Modeling the electrode-electrolyte interface for recording and stimulating electrodes., Conf Proc IEEE Eng Med Biol Soc 2006;1:879-81.17945606TroyJBCantrellDRTafloveARuoffRS.Modeling the electrode-electrolyte interface for recording and stimulating electrodesConf Proc IEEE Eng Med Biol Soc200618798110.1109/IEMBS.2006.260112Search in Google Scholar

Zhou H, Tilton RD, White LR., The role of electrode impedance and electrode geometry in the design of microelectrode systems., J Colloid Interface Sci 2006;297(2):819-31.10.1016/j.jcis.2005.11.02416332373ZhouHTiltonRDWhiteLR.The role of electrode impedance and electrode geometry in the design of microelectrode systemsJ Colloid Interface Sci2006297281931Open DOISearch in Google Scholar

Franks W, Schenker I, Schmutz P, Hierlemann A., Impedance characterization and modeling of electrodes for biomedical applications., IEEE Trans Biomed Eng 2005;52(7):1295-302.1604199310.1109/TBME.2005.847523FranksWSchenkerISchmutzPHierlemannA.Impedance characterization and modeling of electrodes for biomedical applicationsIEEE Trans Biomed Eng20055271295302Search in Google Scholar

Zhou H, Preston MA, Tilton RD, White LR., Calculation of the dynamic impedance of the double layer on a planar electrode by the theory of electrokinetics., J Coll Interf Sci 2005;292:277-89.10.1016/j.jcis.2005.05.037ZhouHPrestonMATiltonRDWhiteLR.Calculation of the dynamic impedance of the double layer on a planar electrode by the theory of electrokineticsJ Coll Interf Sci200529227789Open DOISearch in Google Scholar

Koester O, Schuhmann W, Vogt H, Mokwa W., electrochemical impedance spectroscopy, Quality control of ultra-micro electrode arrays, using cyclic voltammetry and scanning electrochemical microscopy., Sensors and Actuators 2001;76:573-81.10.1016/S0925-4005(01)00637-2KoesterOSchuhmannWVogtHMokwaW.electrochemical impedance spectroscopy, Quality control of ultra-micro electrode arrays, using cyclic voltammetry and scanning electrochemical microscopySensors and Actuators20017657381Open DOISearch in Google Scholar

Bates JB, Chu YT., Electrode-electrolyte interface impedance: experiments and model., Ann Biomed Eng 1992;20(3):349-62.144382910.1007/BF02368536BatesJBChuYT.Electrode-electrolyte interface impedance: experiments and modelAnn Biomed Eng199220334962Search in Google Scholar

MacDonald JR. Impedance spectroscopy. New York: John Wiley & Sons; 1987.MacDonaldJR.Impedance spectroscopyNew YorkJohn Wiley & Sons1987Search in Google Scholar

Ackmann JJ, Seits M.A., Methods of Complex Impedance Measurements in Biological Tissue., CRC Critical Revue in Biol Eng 1984;11(4):281-311.AckmannJJSeitsM.A.Methods of Complex Impedance Measurements in Biological TissueCRC Critical Revue in Biol Eng1984114281311Search in Google Scholar

Geddes LA., Who introduced the tetrapolar method for Measuring resistance and impedance?, IEEE Eingineering in Medicine and Biology 1996;133-4.GeddesLA.Who introduced the tetrapolar method for Measuring resistance and impedance?IEEE Eingineering in Medicine and Biology1996133410.1109/51.537070Search in Google Scholar

Paixao TR, Richter EM, Brito-Neto JG, Bertotti M., Fabrication of a new generator-collector electrochemical micro-device: Characterizations and applications., Electrochemistry Communications 2006;8:9-14.10.1016/j.elecom.2005.10.024PaixaoTRRichterEMBrito-NetoJGBertottiM.Fabrication of a new generator-collector electrochemical micro-device: Characterizations and applicationsElectrochemistry Communications20068914Open DOISearch in Google Scholar

Nacke T, Barthel A, Friedrich J, Helbig M, Sachs J, Peyerl P, et al. A new hard and software concept for impedance spectroscopy analyzers for broadband process measurements. ICEBI 2007; Berlin-Heidelberg: Springer Verlag; 2007 p. 194-7.NackeTBarthelAFriedrichJHelbigMSachsJPeyerlPA new hard and software concept for impedance spectroscopy analyzers for broadband process measurements. ICEBI2007Berlin-HeidelbergSpringer Verlag2007194710.1007/978-3-540-73841-1_52Search in Google Scholar

Rahman ARA, Priece DT, Bhansali S., Effect of electrode geometry on the impedance evaluation of tissue and cell culture., Sensors and Actuators 2007;127:89-96.10.1016/j.snb.2007.07.038RahmanARAPrieceDTBhansaliS.Effect of electrode geometry on the impedance evaluation of tissue and cell cultureSensors and Actuators20071278996Open DOISearch in Google Scholar

McAdams ET, Lackermeier A, McLaughlin JA, Macken D, Jossinet J., The linear and non-linear electrical properties of the electrode-electrolyte interface., Biosensors and Bioelectronics 1995;10:67-74.10.1016/0956-5663(95)96795-ZMcAdamsETLackermeierAMcLaughlinJAMackenDJossinetJThe linear and non-linear electrical properties of the electrode-electrolyte interfaceBiosensors and Bioelectronics1995106774Open DOISearch in Google Scholar

McAdams ET, Jossinet J., The detection of the onset of electrode-electrolyte interface impedance nonlinearity: a theoretical study., IEEE Trans Biomed Eng 1994;41(5):498-500.807081010.1109/10.293225McAdamsETJossinetJThe detection of the onset of electrode-electrolyte interface impedance nonlinearity: a theoretical studyIEEE Trans Biomed Eng19944154985008070810Search in Google Scholar

Grodrian A, Metze J, Henkel T, Martin K, Roth M, Koehler JM., Segment flow generation by chip reactors for highly parallelizid cell cultivation., Biosensors and Bioelectronics 2004;19(11):1421-8.10.1016/j.bios.2003.12.021GrodrianAMetzeJHenkelTMartinKRothMKoehlerJM.Segment flow generation by chip reactors for highly parallelizid cell cultivationBiosensors and Bioelectronics200419111421815093213Open DOISearch in Google Scholar