Accès libre

Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies

À propos de cet article

Citez

Akhavan O. and E. Ghaderi. 2010. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4: 5731–5736.10.1021/nn101390x Search in Google Scholar

Akhavan O., M. Abdolahad, Y. Abdi and S. Mohajerzadeh. 2011. Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J. Mater Chem. 21: 387–393.10.1039/C0JM02395G Search in Google Scholar

Ams D.A., J.B. Fein, H. Dong and P.A. Maurice. 2004. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains. Geomicrobiology J. 21: 511–519.10.1080/01490450490888172 Search in Google Scholar

Barillet S., A. Simon-Deckers, N. Herlin-Boime, M. MayneL’Hermite, C. Reynaud, D. Cassio, B. Gouget and M. Carrière. 2010. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J. Nanopart Res. 12: 61–73. Search in Google Scholar

Borkowski A., M. Szala and T. Cłapa. 2015. Adsorption studies of the Gram-negative bacteria onto nanostructured silicon carbide. Appl. Biochem. Biotechnol. 175: 1448–1459.10.1007/s12010-014-1374-4 Search in Google Scholar

Bourikas K., J. Vakros, C. Kordulis and A. Lycourghiotis. 2003. Potentiometric mass titrations: experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr)oxides. J. Phys. Chem. B. 107: 9441–9451.10.1021/jp035123v Search in Google Scholar

Cadet J.T., T. Delatour, D. Douki, J. Gasparutto, J. Pouget, S. Ravanat and S. Sauvaigo. 1999. Hydroxyl radicals and DNA base damage. Mutat Res. 424: 9–21.10.1016/S0027-5107(99)00004-4 Search in Google Scholar

Cudziło S., M. Szala, A. Huczko and M. Bystrzejewski. 2007. Combustion reactions of poly(carbon monofluoride), (CF)n with different reductants and characterization of products. Propellants, Explosives, Pyrotechnics 32: 149–154. Search in Google Scholar

Farre M., K. Gajda-Schrantz, L. Kantiani and D. Barcelo. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393: 81–95.10.1007/s00216-008-2458-118987850 Search in Google Scholar

Fenoglio I., M. Tomatis, D. Lison, J. Muller, A. Fonseca, B.J. Nagy and B. Fubini. 2006. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic. Biol. Med. 40: 1227–1233.10.1016/j.freeradbiomed.2005.11.01016545691 Search in Google Scholar

Hossain F., O.J. Perales-Perez, S. Hwang and F. Roman. 2014. Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466–467: 1047–1059. Search in Google Scholar

Huczko A., M. Bystrzejewski, H. Lange, A. Fabianowska, S. Cudziło, A. Panas and M. Szala. 2005. Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B. 109: 16244–16251.10.1021/jp050837m16853065 Search in Google Scholar

Jiang D., G. Huang, P. Cai P, X. Rong, and W. Chen. 2007. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Coll. Surf. B: Biointerf. 54: 217–221.10.1016/j.colsurfb.2006.10.03017142018 Search in Google Scholar

Joseph L., J.R.V. Flora, Y.G. Park, M. Badawy, H. Saleh and Y. Yoon. 2012. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and Purification Technology. 95: 64–72.10.1016/j.seppur.2012.04.033 Search in Google Scholar

Kang S., M. Pinault, L.D. Pfefferle L.D and M. Elimelech. 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 23: 8670–8673.10.1021/la701067r17658863 Search in Google Scholar

Kang S., M. Herzberg, D.F. Rodrigues and M. Elimelech. 2008a. Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24: 6409–6413.10.1021/la800951v18512881 Search in Google Scholar

Kang S., M.S. Mauter and M. Elimelech. 2008b. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42: 7528–7534.10.1021/es801017318939597 Search in Google Scholar

Li Q., S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li and P.J.J. Alvarez. 2008. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42: 4591–4602.10.1016/j.watres.2008.08.01518804836 Search in Google Scholar

Liu S., T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen. 2011. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 5: 6971–6980. Search in Google Scholar

Lyon D.Y., L.K. Adams, J.C. Falkner and P.J.J. Alvarez. 2006. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 40: 4360–4366.10.1021/es060365516903271 Search in Google Scholar

Qu X., P.J.J. Alvarez and Q. Li. 2013. Application of nanotechnology in water and wastewater treatment. Water Res. 47: 3931–3946.10.1016/j.watres.2012.09.05823571110 Search in Google Scholar

Reddy A.R.N., Y.N. Reddy, D.R. Krishna and V. Himabindu. 2010. In vitro cytotoxicity of multi-wall carbon nanotubes on human cell lines. Toxicol. Environ. Chem. 92: 1697–1703.10.1080/02772241003682962 Search in Google Scholar

Rivera-Utrilla J., I. Bautista-Toledo, M.A. Ferro-Garcia and C. Moreno-Castilla. 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 76: 1209–1215.10.1002/jctb.506 Search in Google Scholar

Rong X., Q. Huang, X. He, H. Chen H, P. Cai and W. Liang. 2008. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Coll. Surf. B Biointerf. 64: 49–55.10.1016/j.colsurfb.2008.01.00818282693 Search in Google Scholar

Savage N. and M.S. Diallo. 2005. Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7: 331–342.10.1007/s11051-005-7523-5 Search in Google Scholar

Singh A.V., V. Vyas, R. Patil R, V. Sharma, P.E. Scopelliti, G. Bongiorno, A. Podestà A, C. Lenardi, W.N. Gade and P. Milani. 2011. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE 6(9): e25029.10.1371/journal.pone.0025029 Search in Google Scholar

Su R., Y. Jin, M. Tong and H. Kim. 2013. Bactericidal activity of Ag-doped multi-walled carbon nanotubes and the effects of extracellular polymeric substances and natural organic matter. Coll. Surf. B. Biointerf. 104: 133–139.10.1016/j.colsurfb.2012.12.002 Search in Google Scholar

Szala M. 2010. Hexachloroethane as an efficient oxidizer in combustion synthesis of carbonaceous and ceramic nanostructures. International Journal of Self-Propagating High-Temperature Synthesis 19: 28–33.10.3103/S106138621001005X Search in Google Scholar

Szala M. and A. Borkowski. 2014. Toxicity assessment of SiC nanofibers and nanorods against bacteria. Ecotoxicol. Environ. Saf. 100: 287–293.10.1016/j.ecoenv.2013.10.030 Search in Google Scholar

van der Wal A., W. Norde, A.J.B. Zehnder and J. Lyklema. 1997. Determination of the total charge in the cell walls of Gram-positive bacteria. Coll. Surf. B: Biointerf. 9: 81–100.10.1016/S0927-7765(96)01340-9 Search in Google Scholar

Yamamoto O., K. Nakakoshi, T. Sasamoto, H. Nakagawa and K. Miura. 2001. Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide. Carbon 39: 1643–1651.10.1016/S0008-6223(00)00289-X Search in Google Scholar

Yee N., J.B. Fein and C.J. Daughney. 2000. Experimental study of the pH, ionic strength, and reversibility behaviour of bacteriamineral adsorption. Geochim. Cosmochim. Acta 64: 609–617.Search in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology