Accès libre

Review of the role of basic fibroblast growth factor in dental tissue-derived mesenchymal stem cells

À propos de cet article

Citez

Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2:3005.OrnitzDMItohNFibroblast growth factorsGenome Biol20012300510.1016/B0-12-370879-6/00155-1Search in Google Scholar

Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010; 2010:article ID 218142, 18 pages.YunYRWonJEJeonELeeSKangWJoHet alFibroblast growth factors: biology, function, and application for tissue regenerationJ Tissue Eng20102010article ID 2181421810.4061/2010/218142304264121350642Search in Google Scholar

Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 2005; 287:390-402.1621623210.1016/j.ydbio.2005.09.011ThisseBThisseCFunctions and regulations of fibroblast growth factor signaling during embryonic developmentDev Biol200528739040216216232Search in Google Scholar

Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001; 288:413-9.10.1006/bbrc.2001.577711606058TsutsumiSShimazuAMiyazakiKPanHKoikeCYoshidaEet alRetention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGFBiochem Biophys Res Commun2001288413911606058Open DOISearch in Google Scholar

Kato Y Gospodarowicz D. Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor. J Cell Biol. 1985; 100:477-85.10.1083/jcb.100.2.4773968172KatoY Gospodarowicz DSulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factorJ Cell Biol19851004778521134453968172Open DOISearch in Google Scholar

Yeoh JS, de Haan G. Fibroblast growth factors as regulators of stem cell self-renewal and aging. Mech Ageing Dev. 2007; 128:17-24.1711842410.1016/j.mad.2006.11.005YeohJSdeHaan GFibroblast growth factors as regulators of stem cell self-renewal and agingMech Ageing Dev2007128172417118424Search in Google Scholar

Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000; 227:271-8.10.1006/dbio.2000.991211071754AmitMCarpenterMKInokumaMSChiuCPHarrisCPWaknitzMAet alClonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of cultureDev Biol2000227271811071754Open DOISearch in Google Scholar

Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006; 24:185-7.10.1038/nbt117716388305LudwigTELevensteinMEJonesJMBerggrenWTMitchenERFraneJLet alDerivation of human embryonic stem cells in defined conditionsNat Biotechnol200624185716388305Open DOISearch in Google Scholar

Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCg signaling pathway. J Cell Biochem. 2011; 112:1807-16.10.1002/jcb.2309721381082OsathanonTNowwaroteNPavasantPBasic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCg signaling pathwayJ Cell Biochem201111218071621381082Open DOISearch in Google Scholar

Sukarawan W, Nowwarote N, Kerdpon P, Pavasant P, Osathanon T. Effect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teeth. Odontology. 2014; 102: 160-6.10.1007/s10266-013-0124-323872868SukarawanWNowwaroteNKerdponPPavasantPOsathanonTEffect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teethOdontology2014102160623872868Open DOISearch in Google Scholar

Osathanon T, Nowwarote N, Manokawinchoke J, Pavasant P. bFGF and JAGGED1 regulate alkaline phosphatase expression and mineralization in dental tissue-derived mesenchymal stem cells. J Cell Biochem. 2013; 114:2551-61.10.1002/jcb.2460223749297OsathanonTNowwaroteNManokawinchokeJPavasantPbFGF and JAGGED1 regulate alkaline phosphatase expression and mineralization in dental tissue-derived mesenchymal stem cellsJ Cell Biochem2013114255161Open DOISearch in Google Scholar

Yuan S, Pan Q, Fu CJ, Bi Z. Effect of growth factors (BMP-4/7 & bFGF) on proliferation & osteogenic differentiation of bone marrow stromal cells. Indian J Med Res. 2013; 138:104-10.24056563YuanSPanQFuCJBiZEffect of growth factors (BMP-4/7 & bFGF) on proliferation & osteogenic differentiation of bone marrow stromal cellsIndian J Med Res201313810410Search in Google Scholar

Bai Y, Li P, Yin G, Huang Z, Liao X, Chen X, et al. BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnol Lett. 2013; 35:301-8.2314317410.1007/s10529-012-1084-3BaiYLiPYinGHuangZLiaoXChenXet alBMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cellsBiotechnol Lett2013353018Search in Google Scholar

Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry – part I: stem cell sources. J Prosthodont Res. 2012; 56:151-65.10.1016/j.jpor.2012.06.00122796367EgusaHSonoyamaWNishimuraMAtsutaIAkiyamaKStem cells in dentistry – part I: stem cell sourcesJ Prosthodont Res20125615165Open DOISearch in Google Scholar

Machado E, Fernandes MH, Gomes Pde S. Dental stem cells for craniofacial tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 113: 728-33.2267701810.1016/j.tripleo.2011.05.039MachadoEFernandesMHGomesPde SDental stem cells for craniofacial tissue engineeringOral Surg Oral Med Oral Pathol Oral Radiol201211372833Search in Google Scholar

Sedgley CM, Botero TM. Dental stem cells and their sources. Dent Clin North Am. 2012; 56:549-61.10.1016/j.cden.2012.05.00422835537SedgleyCMBoteroTMDental stem cells and their sourcesDent Clin North Am20125654961Open DOISearch in Google Scholar

Eleuterio E, Trubiani O, Sulpizio M, Di Giuseppe F, Pierdomenico L, Marchisio M, et al. Proteome of human stem cells from periodontal ligament and dental pulp. PLoS One. 2013; 8:e71101.2394069610.1371/journal.pone.0071101EleuterioETrubianiOSulpizioMDiGiuseppe FPierdomenicoLMarchisioMet alProteome of human stem cells from periodontal ligament and dental pulpPLoS One20138e71101Search in Google Scholar

Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth. Cells Tissues Organs. 2013; 198:198-208.2419206810.1159/000354901KanafiMMRameshAGuptaPKBhondeRRInfluence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teethCells Tissues Organs2013198198208Search in Google Scholar

Hakki SS, Kayis SA, Hakki EE, Bozkurt SB, Duruksu G, Unal ZS, et al. Comparison of MSCs isolated from pulp and periodontal ligament. J Periodontol. 2014; : 1-17.HakkiSSKayisSAHakkiEEBozkurtSBDuruksuGUnalZSet alComparison of MSCs isolated from pulp and periodontal ligamentJ Periodontol2014117Search in Google Scholar

Sawangmake C, Nowwarote N, Pavasant P, Chansiripornchai P, Osathanon T. A feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2014; 452: 581-7.10.1016/j.bbrc.2014.08.121SawangmakeCNowwaroteNPavasantPChansiripornchaiPOsathanonTA feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cellsBiochem Biophys Res Commun20144525817Open DOISearch in Google Scholar

Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32:263-7.1071662410.1016/S1357-2725(99)00133-8Okada-BanMThieryJPJouanneauJFibroblast growth factor-2Int J Biochem Cell Biol2000322637Search in Google Scholar

Baird A, Schubert D, Ling N, Guillemin R. Receptorand heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA. 1988; 85: 2324-8.10.1073/pnas.85.7.2324BairdASchubertDLingNGuilleminRReceptorand heparin-binding domains of basic fibroblast growth factorProc Natl Acad Sci USA198885232482799842832850Open DOISearch in Google Scholar

Yayon A, Aviezer D, Safran M, Gross JL, Heldman Y, Cabilly S, et al. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc Natl Acad Sci USA. 1993; 90:10643-7.10.1073/pnas.90.22.10643YayonAAviezerDSafranMGrossJLHeldmanYCabillySet alIsolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope libraryProc Natl Acad Sci USA199390106437478337504274Open DOISearch in Google Scholar

Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 2014; 9:92-101.2405710310.1007/s11481-013-9501-5WoodburyMEIkezuTFibroblast growth factor-2 signaling in neurogenesis and neurodegenerationJ Neuroimmune Pharmacol2014992101410980224057103Search in Google Scholar

Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000; 7:165-97.10.1677/erc.0.007016511021964PowersCJMcLeskeySWWellsteinAFibroblast growth factors, their receptors and signalingEndocr Relat Cancer200071659711021964Open DOISearch in Google Scholar

Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993; 259:1918-21.10.1126/science.84563188456318KanMWangFXuJCrabbJWHouJMcKeehanWLAn essential heparin-binding domain in the fibroblast growth factor receptor kinaseScience19932591918218456318Open DOISearch in Google Scholar

Hatch NE. FGF signaling in craniofacial biological control and pathological craniofacial development. Crit Rev Eukaryot Gene Expr. 2010; 20:295-311.2139550310.1615/CritRevEukarGeneExpr.v20.i4.20HatchNEFGF signaling in craniofacial biological control and pathological craniofacial developmentCrit Rev Eukaryot Gene Expr20102029531121395503Search in Google Scholar

Wada M, Gelfman CM, Matsunaga H, Alizadeh M, Morse L, Handa JT, et al. Density-dependent expression of FGF-2 in response to oxidative stress in RPE cells in vitro. Curr Eye Res. 2001; 23:226-31.1180348510.1076/ceyr.23.3.226.5467WadaMGelfmanCMMatsunagaHAlizadehMMorseLHandaJTet alDensity-dependent expression of FGF-2 in response to oxidative stress in RPE cells in vitroCurr Eye Res2001232263111803485Search in Google Scholar

Olwin BB, Hauschka SD. Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J Cell Biol. 1988;107:761-9.10.1083/jcb.107.2.7612843547OlwinBBHauschkaSDCell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in cultureJ Cell Biol1988107761921152152843547Open DOISearch in Google Scholar

Moscatelli D. Autocrine downregulation of fibroblast growth factor receptors in F9 teratocarcinoma cells. J Cell Physiol. 1994; 160:555-62.10.1002/jcp.10416003198077293MoscatelliDAutocrine downregulation of fibroblast growth factor receptors in F9 teratocarcinoma cellsJ Cell Physiol1994160555628077293Open DOISearch in Google Scholar

Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997; 18:26-45.9034785BikfalviAKleinSPintucciGRifkinDBBiological roles of fibroblast growth factor-2Endocr Rev199718264510.1210/edrv.18.1.02929034785Search in Google Scholar

Su N, Du X, Chen L. FGF signaling: its role in bone development and human skeleton diseases. Front Biosci. 2008; 13:2842-65.1798175810.2741/2890SuNDuXChenLFGF signaling: its role in bone development and human skeleton diseasesFront Biosci20081328426517981758Search in Google Scholar

Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem. 2008; 283:5287-95.10.1074/jbc.M70691720018171671YangHXiaYLuSQSoongTWFengZWBasic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1J Biol Chem200828352879518171671Open DOISearch in Google Scholar

Murakami S. Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy?. Periodontol. 2011; 56:188-208.10.1111/j.1600-0757.2010.00365.xMurakamiSPeriodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy?Periodontol20115618820821501244Open DOISearch in Google Scholar

Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2012; 30:623-30.2221311310.1002/stem.1021ChenGGulbransonDRYuPHouZThomsonJAThermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cellsStem Cells20123062330353880822213113Search in Google Scholar

Park JH, Hong J. Continuous release of bFGF from multilayer nanofilm to maintain undifferentiated human iPS cell cultures. Integr Biol (Camb). 2014; 6:1196-200.10.1039/C4IB00210E25316061ParkJHHongJContinuous release of bFGF from multilayer nanofilm to maintain undifferentiated human iPS cell culturesIntegr Biol (Camb)20146119620025316061Open DOISearch in Google Scholar

Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’ Sullivan C, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005; 23:315-23.1574992610.1634/stemcells.2004-0211XuCRoslerEJiangJLebkowskiJSGoldJDO’Sullivan Cet alBasic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned mediumStem Cells2005233152315749926Search in Google Scholar

Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005; 118: 4495-509.10.1242/jcs.0255316179608VallierLAlexanderMPedersenRAActivin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cellsJ Cell Sci2005118449550916179608Open DOISearch in Google Scholar

Park Y, Choi I Y, Lee SJ, Lee SR, Sung HJ, Kim JH, et al. Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev. 2010; 19: 1713-22.2020168110.1089/scd.2010.0014ParkYChoiI YLeeSJLeeSRSungHJKimJHet alUndifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementationStem Cells Dev20101917132220201681Search in Google Scholar

Xi J, Wang Y, Zhang P, He L, Nan X, Yue W, et al. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS One. 2010; 5:e14457.10.1371/journal.pone.001445721209880XiJWangYZhangPHeLNanXYueWet alHuman fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cellsPLoS One20105e14457301269221209880Open DOISearch in Google Scholar

Park Y, Kim JH, Lee SJ, Choi IY, Park SJ, Lee SR, et al. Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells Dev. 2011; 20:1901-10.10.1089/scd.2010.049621231869ParkYKimJHLeeSJChoiIYParkSJLeeSRet alHuman feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factorsStem Cells Dev20112019011021231869Open DOISearch in Google Scholar

Quang T, Marquez M, Blanco G, Zhao Y. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PLoS One. 2014; 9:e86031.10.1371/journal.pone.008603124465853QuangTMarquezMBlancoGZhaoYDosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cellsPLoS One20149e86031389501524465853Open DOISearch in Google Scholar

Kong YP, Tu CH, Donovan PJ, Yee AF. Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomater. 2013; 9:6369-80.10.1016/j.actbio.2013.01.03623391989KongYPTuCHDonovanPJYeeAFExpression of Oct4 in human embryonic stem cells is dependent on nanotopographical configurationActa Biomater2013963698023391989Open DOISearch in Google Scholar

Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell. 2011; 8:326-34.10.1016/j.stem.2011.01.00121362572YuPPanGYuJThomsonJAFGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiationCell Stem Cell2011832634305273521362572Open DOISearch in Google Scholar

Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE, et al. Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev. 2005; 14:395-401.1613722810.1089/scd.2005.14.395KangHBKimJSKwonHJNamKHYounHSSokDEet alBasic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1Stem Cells Dev20051439540116137228Search in Google Scholar

Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun. 2005; 330:934-42.10.1016/j.bbrc.2005.03.05815809086WangGZhangHZhaoYLiJCaiJWangPet alNoggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layersBiochem Biophys Res Commun20053309344215809086Open DOISearch in Google Scholar

Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem. 2009; 284: 34054-64.1982845310.1074/jbc.M109.052290WangXLinGMartins-TaylorKZengHXuRHInhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cellsJ Biol Chem20092843405464279717619828453Search in Google Scholar

Go MJ, Takenaka C, Ohgushi H. Effect of forced expression of basic fibroblast growth factor in human bone marrow-derived mesenchymal stromal cells. J Biochem. 2007; 142:741-8.10.1093/jb/mvm18917956905GoMJTakenakaCOhgushiHEffect of forced expression of basic fibroblast growth factor in human bone marrow-derived mesenchymal stromal cellsJ Biochem2007142741817956905Open DOISearch in Google Scholar

Zhang X, Wang Y, Gao Y, Liu X, Bai T, Li M, et al. Maintenance of high proliferation and multipotent potential of human hair follicle-derived mesenchymal stem cells by growth factors. Int J Mol Med. 2013; 31:913-21.10.3892/ijmm.2013.127223403715ZhangXWangYGaoYLiuXBaiTLiMet alMaintenance of high proliferation and multipotent potential of human hair follicle-derived mesenchymal stem cells by growth factorsInt J Mol Med2013319132123403715Open DOISearch in Google Scholar

Ramasamy R, Tong CK, Yip WK, Vellasamy S, Tan BC, Seow HF. Basic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cells. Cell Prolif. 2012; 45:132-9.10.1111/j.1365-2184.2012.00808.x22309282RamasamyRTongCKYipWKVellasamySTanBCSeowHFBasic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cellsCell Prolif2012451329649549222309282Open DOISearch in Google Scholar

Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000; 105:1085-93.10.1172/JCI864110772653MonteroAOkadaYTomitaMItoMTsurukamiHNakamuraTet alDisruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formationJ Clin Invest200010510859330083110772653Open DOISearch in Google Scholar

Pitaru S, Kotev-Emeth S, Noff D, Kaffuler S, Savion N. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res. 1993; 8:919-29.8213254PitaruSKotev-EmethSNoffDKaffulerSSavionNEffect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in cultureJ Bone Miner Res199389192910.1002/jbmr.56500808048213254Search in Google Scholar

Sakaguchi DS, Janick LM, Reh TA. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev Dyn. 1997; 209:387-98.926426210.1002/(SICI)1097-0177(199708)209:4<387::AID-AJA6>3.0.CO;2-ESakaguchiDSJanickLMRehTABasic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and gliaDev Dyn199720938798Search in Google Scholar

Pri-Chen S, Pitaru S, Lokiec F, Savion N. Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone. 1998; 23:111-7.10.1016/S8756-3282(98)00087-89701469Pri-ChenSPitaruSLokiecFSavionNBasic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in cultureBone1998231117Open DOISearch in Google Scholar

Hanada K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res. 1997; 12:1606-14.10.1359/jbmr.1997.12.10.16069333121HanadaKDennisJECaplanAIStimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cellsJ Bone Miner Res199712160614Open DOISearch in Google Scholar

Park MS, Kim SS, Cho SW, Choi CY, Kim BS. Enhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factor. J Biomed Mater Res B Appl Biomater. 2006; 79:353-9.16924630ParkMSKimSSChoSWChoiCYKimBSEnhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factorJ Biomed Mater Res B Appl Biomater200679353910.1002/jbm.b.30549Search in Google Scholar

Zheng YH, Su K, Jian YT, Kuang SJ, Zhang ZG. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med. 2011; 5:540-50.2169579510.1002/term.346ZhengYHSuKJianYTKuangSJZhangZGBasic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructsJ Tissue Eng Regen Med2011554050Search in Google Scholar

Oh SA, Lee HY, Lee JH, Kim TH, Jang JH, Kim HW, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng Part A. 2012; 18:1087-100.10.1089/ten.tea.2011.036022145747OhSALeeHYLeeJHKimTHJangJHKimHWet alCollagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiationTissue Eng Part A2012181087100Open DOISearch in Google Scholar

Tanaka H, Ogasa H, Barnes J, Liang CT. Actions of bFGF on mitogenic activity and lineage expression in rat osteoprogenitor cells: effect of age. Mol Cell Endocrinol. 1999; 150:1-10.1041129410.1016/S0303-7207(99)00046-5TanakaHOgasaHBarnesJLiangCTActions of bFGF on mitogenic activity and lineage expression in rat osteoprogenitor cells: effect of ageMol Cell Endocrinol1999150110Search in Google Scholar

Qian J, Jiayuan W, Wenkai J, Peina W, Ansheng Z, Shukai S, et al. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J. 2015; 48:690-700.10.1111/iej.12368QianJJiayuanWWenkaiJPeinaWAnshengZShukaiSet alBasic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent mannerInt Endod J201548690700Open DOISearch in Google Scholar

Li B, Qu C, Chen C, Liu Y, Akiyama K, Yang R, et al. Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling. Oral Dis. 2012; 18:285-92.10.1111/j.1601-0825.2011.01878.x22151351LiBQuCChenCLiuYAkiyamaKYangRet alBasic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signalingOral Dis20121828592Open DOISearch in Google Scholar

Wang H, Zou Q, Boerman OC, Nijhuis AW, Jansen JA, Li Y, et al. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Release. 2013; 166:172-81.10.1016/j.jconrel.2012.12.015WangHZouQBoermanOCNijhuisAWJansenJALiYet alCombined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivoJ Control Release201316617281Open DOISearch in Google Scholar

Lai WT, Krishnappa V, Phinney DG. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells. 2011; 29: 1102-11.10.1002/stem.66121608080LaiWTKrishnappaVPhinneyDGFibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levelsStem Cells201129110211341055721608080Open DOISearch in Google Scholar

Rose LC, Fitzsimmons R, Lee P, Krawetz R, Rancourt DE, Uludag H. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation. J Tissue Eng Regen Med. 2013; 7: 371-82.10.1002/term.53222674886RoseLCFitzsimmonsRLeePKrawetzRRancourtDEUludagHEffect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiationJ Tissue Eng Regen Med201373718222674886Open DOISearch in Google Scholar

Hatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2. J Bone Miner Res. 2009; 24:652-62.10.1359/jbmr.08121319049325HatchNELiYFranceschiRTFGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2J Bone Miner Res20092465262265951219049325Open DOISearch in Google Scholar

Hatch NE, Nociti F, Swanson E, Bothwell M, Somerman M. FGF2 alters expression of the pyrophosphate/ phosphate regulating proteins, PC-1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4). Connect Tissue Res. 2005; 46:184-92.10.1080/0300820050023720316546821HatchNENocitiFSwansonEBothwellMSomermanMFGF2 alters expression of the pyrophosphate/ phosphate regulating proteins, PC-1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4)Connect Tissue Res2005461849216546821Open DOISearch in Google Scholar

Xiao L, Sobue T, Esliger A, Kronenberg MS, Coffin JD, Doetschman T, et al. Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone. 2010; 47:360-70.2051039210.1016/j.bone.2010.05.021XiaoLSobueTEsligerAKronenbergMSCoffinJDDoetschmanTet alDisruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cellsBone20104736070294743720510392Search in Google Scholar

Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011; 29:1727-37.10.1002/stem.72021898687FierroFAKalomoirisSSondergaardCSNoltaJAEffects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapyStem Cells201129172737378425821898687Open DOISearch in Google Scholar

Inoue S, Imamura M, Tabata Y. Adipogenic differentiation of adipo-stromal cells incubated with basic fibroblast growth factor in solution and coated form. J Biomater Sci Polym Ed. 2009; 20:483-94.1922844910.1163/156856209X416494InoueSImamuraMTabataYAdipogenic differentiation of adipo-stromal cells incubated with basic fibroblast growth factor in solution and coated formJ Biomater Sci Polym Ed2009204839419228449Search in Google Scholar

Song X, Li Y, Chen X, Yin G, Huang Q, Chen Y, et al. bFGF promotes adipocyte differentiation in human mesenchymal stem cells derived from embryonic stem cells. Genet Mol Biol. 2014; 37:127-34.10.1590/S1415-4757201400010001924688300SongXLiYChenXYinGHuangQChenYet albFGF promotes adipocyte differentiation in human mesenchymal stem cells derived from embryonic stem cellsGenet Mol Biol20143712734Open DOISearch in Google Scholar

Neubauer M, Fischbach C, Bauer-Kreisel P, Lieb E, Hacker M, Tessmar J, et al. Basic fibroblast growth factor enhances PPARg ligand-induced adipogenesis of mesenchymal stem cells. FEBS Lett. 2004; 577: 277-83.10.1016/j.febslet.2004.10.020NeubauerMFischbachCBauer-KreiselPLiebEHackerMTessmarJet alBasic fibroblast growth factor enhances PPARg ligand-induced adipogenesis of mesenchymal stem cellsFEBS Lett20045772778315527799Open DOISearch in Google Scholar

Lu Q, Li M, Zou Y, Cao T. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J Control Release. 2014; 174:43-50.10.1016/j.jconrel.2013.11.00724240014LuQLiMZouYCaoTDelivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesisJ Control Release2014174435024240014Open DOISearch in Google Scholar

Kakudo N, Shimotsuma A, Kusumoto K. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun. 2007; 359:239-44.1754328310.1016/j.bbrc.2007.05.070KakudoNShimotsumaAKusumotoKFibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cellsBiochem Biophys Res Commun200735923944Search in Google Scholar

Neubauer M, Hacker M, Bauer-Kreisel P, Weiser B, Fischbach C, Schulz MB, et al. Adipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitro. Tissue Eng. 2005; 11:1840-51.10.1089/ten.2005.11.184016411830NeubauerMHackerMBauer-KreiselPWeiserBFischbachCSchulzMBet alAdipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitroTissue Eng200511184051Open DOISearch in Google Scholar

Stemple DL, Mahanthappa NK, Anderson DJ. Basic FGF induces neuronal differentiation, cell division, and NGF dependence in chromaffin cells: a sequence of events in sympathetic development. Neuron. 1988; 1:517-25.10.1016/0896-6273(88)90182-1StempleDLMahanthappaNKAndersonDJBasic FGF induces neuronal differentiation, cell division, and NGF dependence in chromaffin cells: a sequence of events in sympathetic developmentNeuron1988151725Open DOISearch in Google Scholar

Dai Z, Peng HB. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J Neurosci. 1995; 15:5466-75.7643195DaiZPengHBPresynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factorJ Neurosci19951554667510.1523/JNEUROSCI.15-08-05466.1995Search in Google Scholar

Niknejad H, Peirovi H, Ahmadiani A, Ghanavi J, Jorjani M. Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. Eur Cell Mater. 2010; 19:22-9.10.22203/eCM.v019a0320077402NiknejadHPeiroviHAhmadianiAGhanaviJJorjaniMDifferentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cellsEur Cell Mater201019229Open DOISearch in Google Scholar

Guan M, Xu Y, Wang W, Lin S. Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells. Eur Cytokine Netw. 2014; 25:58-63.25336204GuanMXuYWangWLinSDifferentiation into neurons of rat bone marrow-derived mesenchymal stem cellsEur Cytokine Netw201425586310.1684/ecn.2014.035725336204Search in Google Scholar

Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 2010; 11:25.10.1186/1471-2121-11-2520398362JangSChoHHChoYBParkJSJeongHSFunctional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolinBMC Cell Biol20101125286779120398362Open DOISearch in Google Scholar

Hu F, Wang X, Liang G, Lv L, Zhu Y, Sun B, et al. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram. 2013; 15:224-32.23713433HuFWangXLiangGLvLZhuYSunBet alEffects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cellsCell Reprogram2013152243210.1089/cell.2012.0077366624823713433Search in Google Scholar

Kang ML, Kwon JS, Kim MS. Induction of neuronal differentiation of rat muscle-derived stem cells in vitro using basic fibroblast growth factor and ethosuximide. Int J Mol Sci. 2013; 14:6614-23.10.3390/ijms1404661423528890KangMLKwonJSKimMSInduction of neuronal differentiation of rat muscle-derived stem cells in vitro using basic fibroblast growth factor and ethosuximideInt J Mol Sci201314661423364565723528890Open DOISearch in Google Scholar

Nakano R, Edamura K, Nakayama T, Teshima K, Asano K, Narita T, et al. Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor. J Vet Med Sci. 2015; 77:27-35.10.1292/jvms.14-028425284120NakanoREdamuraKNakayamaTTeshimaKAsanoKNaritaTet alDifferentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factorJ Vet Med Sci2015772735434953525284120Open DOISearch in Google Scholar

Zhu H, Yang A, Du J, Li D, Liu M, Ding F, et al. Basic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotype. Neurosci Lett. 2014; 559:82-7.10.1016/j.neulet.2013.11.04424309293ZhuHYangADuJLiDLiuMDingFet alBasic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotypeNeurosci Lett201455982724309293Open DOISearch in Google Scholar

McAvoy JW, Chamberlain C G. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development. 1989; 107:221-8.2632221McAvoyJWChamberlainC GFibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentrationDevelopment1989107221810.1242/dev.107.2.2212632221Search in Google Scholar

Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest. 2005; 115:1724-33.1595183810.1172/JCI23418Rosenblatt-VelinNLeporeMGCartoniCBeermannFPedrazziniTFGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytesJ Clin Invest2005115172433114358715951838Search in Google Scholar

Khezri S, Valojerdi MR, Sepehri H, Baharvand H. Effect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cells. Saudi Med J. 2007; 28:181-6.17268693KhezriSValojerdiMRSepehriHBaharvandHEffect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cellsSaudi Med J2007281816Search in Google Scholar

Subramony SD, Su A, Yeager K, Lu HH. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech. 2014; 47:2189-96.2426727110.1016/j.jbiomech.2013.10.016SubramonySDSuAYeagerKLuHHCombined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffoldsJ Biomech201447218996405878524267271Search in Google Scholar

Duan B, Hockaday LA, Das S, Xu CY, Butcher JT. Comparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3D engineered matrices. Tissue Eng Part C Methods. 2015; 21: [Epub ahead of print] DOI: 10.1089/ten.tec.2014.0589DuanBHockadayLADasSXuCYButcherJTComparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3D engineered matricesTissue Eng Part C Methods201521[Epub ahead of print] DOI10.1089/ten.tec.2014.0589452301125594437Search in Google Scholar

Morito A, Kida Y, Suzuki K, Inoue K, Kuroda N, Gomi K, et al. Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells. Arch Histol Cytol. 2009; 72:51-64.1978941210.1679/aohc.72.51MoritoAKidaYSuzukiKInoueKKurodaNGomiKet alEffects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cellsArch Histol Cytol200972516419789412Search in Google Scholar

Hidaka T, Nagasawa T, Shirai K, Kado T, Furuichi Y. FGF-2 induces proliferation of human periodontal ligament cells and maintains differentiation potentials of STRO-1+/CD146+ periodontal ligament cells. Arch Oral Biol. 2012; 57:830-40.10.1016/j.archoralbio.2011.12.00322244620HidakaTNagasawaTShiraiKKadoTFuruichiYFGF-2 induces proliferation of human periodontal ligament cells and maintains differentiation potentials of STRO-1+/CD146+ periodontal ligament cellsArch Oral Biol2012578304022244620Open DOISearch in Google Scholar

Wu J, Huang GT, He W, Wang P, Tong Z, Jia Q, et al. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J Endod. 2012; 38:614-22.10.1016/j.joen.2012.01.01422515889WuJHuangGTHeWWangPTongZJiaQet alBasic fibroblast growth factor enhances stemness of human stem cells from the apical papillaJ Endod20123861422349997222515889Open DOISearch in Google Scholar

Kim J, Park JC, Kim SH, Im GI, Kim BS, Lee JB, et al. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis. 2014; 20:191-204.10.1111/odi.1208923496287KimJParkJCKimSHImGIKimBSLeeJBet alTreatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teethOral Dis20142019120423496287Open DOISearch in Google Scholar

Lee JH, Um S, Jang JH, Seo BM. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res. 2012; 348:475-84.10.1007/s00441-012-1392-x22437875LeeJHUmSJangJHSeoBMEffects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cellsCell Tissue Res20123484758422437875Open DOISearch in Google Scholar

He H, Yu J, Liu Y, Lu S, Liu H, Shi J, et al. Effects of FGF2 and TGFb on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int. 2008; 32: 827-34.10.1016/j.cellbi.2008.03.013HeHYuJLiuYLuSLiuHShiJet alEffects of FGF2 and TGFb on the differentiation of human dental pulp stem cells in vitroCell Biol Int2008328273418442933Open DOISearch in Google Scholar

Kono K, Maeda H, Fujii S, Tomokiyo A, Yamamoto N, Wada N, et al. Exposure to transforming growth factor-b1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res. 2013; 352:249-63.10.1007/s00441-012-1543-0KonoKMaedaHFujiiSTomokiyoAYamamotoNWadaNet alExposure to transforming growth factor-b1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell linesCell Tissue Res20133522496323324989Open DOISearch in Google Scholar

Kim YS, Min KS, Jeong DH, Jang JH, Kim HW, Kim EC. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. J Endod. 2010; 36:1824-30.10.1016/j.joen.2010.08.02020951295KimYSMinKSJeongDHJangJHKimHWKimECEffects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cellsJ Endod20103618243020951295Open DOISearch in Google Scholar

Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ikezawa K, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res. 2003; 38: 97-103.1255894310.1034/j.1600-0765.2003.00640.xMurakamiSTakayamaSKitamuraMShimabukuroYYanagiKIkezawaKet alRecombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogsJ Periodontal Res2003389710312558943Search in Google Scholar

Nowwarote N, Pavasant P, Osathanon T. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Arch Oral Biol. 2015; 60:408-15.10.1016/j.archoralbio.2014.11.01725526625NowwaroteNPavasantPOsathanonTRole of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teethArch Oral Biol2015604081525526625Open DOISearch in Google Scholar

Wang X, Sha XJ, Li GH, Yang FS, Ji K, Wen LY, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol. 2012; 57:1231-40.10.1016/j.archoralbio.2012.02.01422455989WangXShaXJLiGHYangFSJiKWenLYet alComparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cellsArch Oral Biol20125712314022455989Open DOISearch in Google Scholar

Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H. Periodontal regeneration by FGF-2 (bFGF) in primate models. J Dent Res. 2001; 80:2075-9.1180876510.1177/00220345010800121001TakayamaSMurakamiSShimabukuroYKitamuraMOkadaHPeriodontal regeneration by FGF-2 (bFGF) in primate modelsJ Dent Res2001802075911808765Search in Google Scholar

Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011; 90:1013-8.10.1177/002203451140842621586666SuzukiTLeeCHChenMZhaoWFuSYQiJJet alInduced migration of dental pulp stem cells for in vivo pulp regenerationJ Dent Res2011901013821586666Open DOISearch in Google Scholar

Kikuchi N, Kitamura C, Morotomi T, Inuyama Y, Ishimatsu H, Tabata Y, et al. Formation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels. J Endod. 2007; 33:1198-202.10.1016/j.joen.2007.07.02517889689KikuchiNKitamuraCMorotomiTInuyamaYIshimatsuHTabataYet alFormation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogelsJ Endod200733119820217889689Open DOISearch in Google Scholar

Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, et al. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod. 2009; 35: 858-65.1948218610.1016/j.joen.2009.03.049IshimatsuHKitamuraCMorotomiTTabataYNishiharaTChenKKet alFormation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogelsJ Endod2009358586519482186Search in Google Scholar

Hu CC, Zhang C, Qian Q, Tatum NB. Reparative dentin formation in rat molars after direct pulp capping with growth factors. J Endod. 1998; 24:744-51.10.1016/S0099-2399(98)80166-09855826HuCCZhangCQianQTatumNBReparative dentin formation in rat molars after direct pulp capping with growth factorsJ Endod19982474451Open DOISearch in Google Scholar

Shirakata Y, Taniyama K, Yoshimoto T, Miyamoto M, Takeuchi N, Matsuyama T, et al. Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs. J Clin Periodontol. 2010; 37:374-81.2044726110.1111/j.1600-051X.2010.01539.xShirakataYTaniyamaKYoshimotoTMiyamotoMTakeuchiNMatsuyamaTet alRegenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogsJ Clin Periodontol2010373748120447261Search in Google Scholar

Saito A, Saito E, Kuboki Y, Kimura M, Nakajima T, Yuge F, et al. Periodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogs. Dent Mater J. 2013; 32:256-62.2353876110.4012/dmj.2012-171SaitoASaitoEKubokiYKimuraMNakajimaTYugeFet alPeriodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogsDent Mater J2013322566223538761Search in Google Scholar

Dereka XE, Markopoulou CE, Mamalis A, Pepelassi E, Vrotsos IA. Time- and dose-dependent mitogenic effect of basic fibroblast growth factor combined with different bone graft materials: an in vitro study. Clin Oral Implants Res. 2006; 17:554-9.10.1111/j.1600-0501.2006.01262.xDerekaXEMarkopoulouCEMamalisAPepelassiEVrotsosIATime- and dose-dependent mitogenic effect of basic fibroblast growth factor combined with different bone graft materials: an in vitro studyClin Oral Implants Res200617554916958696Open DOISearch in Google Scholar

Kinoshita Y, Matsuo M, Todoki K, Ozono S, Fukuoka S, Tsuzuki H, et al. Alveolar bone regeneration using absorbable poly(L-lactide-co-e-caprolactone)/ b-tricalcium phosphate membrane and gelatin sponge incorporating basic fibroblast growth factor. Int J Oral Maxillofac Surg. 2008; 37:275-81.10.1016/j.ijom.2007.11.010KinoshitaYMatsuoMTodokiKOzonoSFukuokaSTsuzukiHet alAlveolar bone regeneration using absorbable poly(L-lactide-co-e-caprolactone)/ b-tricalcium phosphate membrane and gelatin sponge incorporating basic fibroblast growth factorInt J Oral Maxillofac Surg2008372758118262760Open DOISearch in Google Scholar

Matsumoto G, Hoshino J, Kinoshita Y, Sugita Y, Kubo K, Maeda H, et al. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dog. J Biomater Appl. 2012; 27:485-93.2207134910.1177/0885328211414940MatsumotoGHoshinoJKinoshitaYSugitaYKuboKMaedaHet alAlveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dogJ Biomater Appl2012274859322071349Search in Google Scholar

Villegas SN, Canham M, Brickman JM. FGF signalling as a mediator of lineage transitions–evidence from embryonic stem cell differentiation. J Cell Biochem. 2010; 110:10-20.20336694VillegasSNCanhamMBrickmanJMFGF signalling as a mediator of lineage transitions–evidence from embryonic stem cell differentiationJ Cell Biochem2010110102010.1002/jcb.2253620336694Search in Google Scholar

Nishino Y, Ebisawa K, Yamada Y, Okabe K, Kamei Y, Ueda M. Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. J Craniofac Surg. 2011; 22: 438-42.2140356310.1097/SCS.0b013e318207b507NishinoYEbisawaKYamadaYOkabeKKameiYUedaMHuman deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defectJ Craniofac Surg2011224384221403563Search in Google Scholar

Lee TH, Kim WT, Ryu CJ, Jang YJ. Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem Cell Biol. 2015; 26:1-8.LeeTHKimWTRyuCJJangYJOptimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblastsBiochem Cell Biol2015261810.1139/bcb-2014-014025789782Search in Google Scholar

Yang JW, Zhang YF, Sun ZY, Song GT, Chen Z. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl. 2015. [Epub ahead of print]25791684YangJWZhangYFSunZYSongGTChenZDental pulp tissue engineering with bFGF-incorporated silk fibroin scaffoldsJ Biomater Appl2015[Epub ahead of print]10.1177/088532821557729625791684Search in Google Scholar

Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, et al. Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci. 2008; 27: 538-48.1827930710.1111/j.1460-9568.2008.06026.xSasakiRAokiSYamatoMUchiyamaHWadaKOkanoTet alNeurosphere generation from dental pulp of adult rat incisorEur J Neurosci2008275384818279307Search in Google Scholar

Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis. 2015; 21:113-22.2449521110.1111/odi.12227TakeuchiNHayashiYMurakamiMAlvarezFJHoribeHIoharaKet alSimilar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factorOral Dis2015211132224495211Search in Google Scholar

Suphanantachat S, Iwata T, Ishihara J, Yamato M, Okano T, Izumi Y. A role for c-Kit in the maintenance of undifferentiated human mesenchymal stromal cells. Biomaterials. 2014; 35:3618-26.2446235510.1016/j.biomaterials.2014.01.031SuphanantachatSIwataTIshiharaJYamatoMOkanoTIzumiYA role for c-Kit in the maintenance of undifferentiated human mesenchymal stromal cellsBiomaterials20143536182624462355Search in Google Scholar

Dangaria SJ, Ito Y, Walker C, Druzinsky R, Luan X, Diekwisch TG. Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation. 2009; 78:79-90.1943334410.1016/j.diff.2009.03.005DangariaSJItoYWalkerCDruzinskyRLuanXDiekwischTGExtracellular matrix-mediated differentiation of periodontal progenitor cellsDifferentiation2009787990274484519433344Search in Google Scholar

eISSN:
1875-855X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine